
FindFlow: Visual Interface for Information Search based on
Intermediate Results

Tomoyuki Hansaki Buntarou Shizuki Kazuo Misue Jiro Tanaka

Graduate School of Systems and Information Engineering
University of Tsukuba,

Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
Email: {hansaki, shizuki, misue, jiro}@iplab.cs.tsukuba.ac.jp

Abstract

FindFlow is a search interface that enables users to
construct queries visually on the screen. Because the
constructed queries show the process of the search,
the user can take a step forward in the search while
monitoring the process. The queries can be re-
combined freely, and previous search results can be
reused. In addition, FindFlow shows results inter-
actively for each operation. FindFlow is advantages
for searches in which the user repeats trial and error
many times.

Keywords: Visual Query, Information Search, Inter-
active Interface, Visual Interface.

1 Introduction

Searching for information, whether it is for renting
an apartment, making a purchase, reserving a hotel
room, or various other purposes, is something many
of us do in our daily lives. To find the information we
want, we have to construct the query appropriately.
For example, in searching for an apartment, factors
that we might include in the query are rent, location,
age, size and distance to a train station. The search
is then conducted by trial and error. If the results
are not satisfactory, we change some conditions and
repeat the search.

Many systems show only results that match the
query completely. In many cases, although the result
matches the query, we are not satisfied with what the
search has returned, but we do not know which part of
the query we should change to find what we want. We
have to change the query partly or entirely through
trial and error many times to find the needed result
(Teeven, Alvarado, Karger & Ackerman 2004).

At other times, we may want to reuse a previous
search, However, this is often not possible because a
system may keep only the last result even if it is used
many times. This means we have to construct the
same query over and over.

When we repeat a search many times, the query
often changes as we get new ideas about how to find
what we are looking for. Often the system keeps re-
turning a result that does not really satisfy our orig-
inal request, but accept it anyway and give up the
search.

In any search, the user has to formulate a query,
input the query, execute the search, and monitor the
results. We think the search system should support

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Asia-Pacific Symposium on Information Visu-
alization (APVIS 2006), Tokyo, Japan, February 2006. Confer-
ences in Research and Practice in Information Technology, Vol.
60. K. Misue, K. Sugiyama and J. Tanaka, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

these steps to make the whole search process easier
and faster.

We have developed a visual search interface called
“FindFlow”. FindFlow features a directed graph
and supports query construction, trial and error, and
reuse. FindFlow shows not only the final result but
also the intermediate results, based on which the user
can construct or modify queries. We expect that
FindFlow will help users find what they the desired
results, because queries can be constructed easily,
quickly, and adequately.

2 Design

2.1 Support for Constructing a Query

The system should support query construction. A
complicated text query is difficult to understand even
if we have constructed it ourselves. The system
should therefore provide a view of the query that the
user can easily comprehend. The system should also
provide functions for easy and fast query construc-
tion. The user has to repeat search steps many times
during a search. The system should therefore offer
support to reduce search time.

2.2 Support Trial and Error

Since the user repeats trial and error in a search, the
system should support this process. When a result is
unacceptable, the query has to be modified, but, on
the basis of only the final result, it is difficult to de-
termine exactly how the query should be changed. If
the system shows how each condition in the query in-
fluences the results, the user will know how to obtain
better results. The system should also support search
with multiple queries at the same time. The user
changes the query and searches many times, when
the user considers how a certain query might return a
good result and changes the wording of the query ac-
cordingly. If searches could be performed using multi-
ple queries at the same time, it would not be necessary
to repeat the search steps so many times.

The system should show the result interactively
so that the user does not have to do execute a search
after each operation, and can confirm the result im-
mediately.

2.3 Support for Reuse

Sometimes, the user wants to reuse a previous search
when starting a similar one. The system should there-
fore support the reuse of previous searches.

3 FindFlow

FindFlow is a visual search interface that allows users
to construct queries visually using a dataflow diagram

(Fig. 1).

Node(Normal)

Root Node

ToolBox

Edge

Filter

Figure 1: Screenshot of FindFlow: The user is search-
ing for an apartment in Tsukuba.

Several visual interfaces that allow users to con-
struct queries on the screen have been developed
(Young & Shneiderman 1993, Guo 2003, Angelaccio,
Catarci & Santucci 1990, Batini, Catarci, Costabile &
Levialdi 1996, Catarci, Costabile & Levialdi 1993, Kr-
ishnan & Kunii 1991). We chose a visual interface
based on a dataflow diagram because the whole pro-
cess can be represented in one diagram, with makes
things easy to understand, and because it is easy to
compose queries with it (Tanimoto 2003).

FindFlow shows a visual query that describes both
the query conditions and results, so that the user can
know how the query should be changed. It also shows
the results interactively after each user operation, and
the user can construct the query while monitoring
results.

Node

Node

Node

Node

Node

Edge

Filter

Sub-Query2

Sub-Query1

Q
u
e
ry

Figure 2: The query and a sub-query.

In FindFlow, a query is constructed using an edge,
node, and filter. Various queries can be constructed
at the same time (Fig. 2). The part of the query
from the root node to another node is called a sub-
query. The user can execute various searches at the
same time using sub-queries.

3.1 Compositions for Constructing Query

Edge The edge connects two nodes and sends data
from one node to the other.An arrow shows the
direction the data is sent. A filter on the edge
filters data from the sending node, and the thick-
ness of the edge indicates how much data has
been filtered. The thickness of the edge changes
depending on the amount of data in both the
sending node and the receiving node. This helps
the user know how the filter works and determine
how the query should be changed.

Node The node receives data from edges and shows
the received data. The node shows headings for
the data in a list and highlights frequently ap-
pearing words. The order of data shown in the
list depends on the filters (described later). The
user can know what kind of data the node con-
tains and whether the filter is appropriate or not.
If the filter is not appropriate, the user changes
or rearranges the compositions. If the node is too
small to see the result, the view can be enlarged
by dragging from the right bottom corner of the
node.
There are two types of nodes: a normal node,
which is yellow, and a root node, which is red.
The root node contains all data from the search.
The user connects some normal nodes to the root
node and starts the search.

Filter To help the user construct queries, the filter
is shown as an icon on the screen. By dragging
the icon, the user can add, remove, or exchange
it anytime. The user can set up the filter on the
edge by moving the icon to it. When the mouse
pointer touches the edge as the icon in dragged,
FindFlow interactively shows the results of ap-
plying the filter. This helps the user can deter-
mine how to construct a query while confirming
the results. The filter shows the setting window
when the icon is clicked. The user can decide
how the filter will work in detail by changing the
settings. Figure 3 shows a rent filter. The user
can change the rent criteria by moving the scroll-
bar, which is shaded according to the amount of
matched data. The scrollbar shows the results
by shading, which supports trial and error.

Figure 3: Setting window of rent filter

3.2 Operations

FindFlow’s simple operations help make query con-
struction easy, FindFlow shows the results interac-
tively after each operation.

Creating a Node To create a node, the user simply
clicks the right top button of a node.

Connecting Two Nodes Figure 4 shows the oper-
ation for making connections. To connect exist-
ing nodes, the user clicks the right upper button

Click

Release
Connected

(a) (b)

(c) (d)

Figure 4: Operations for connecting nodes.

Click Right Button

Disconnected

(a) (b)

Figure 5: Operations for disconnecting nodes.

of the sending node (a). The new node is cre-
ated (b), and the user drags it to the receiving
node (c). FindFlow makes the edge work as the
connection (d). When the connection is made,
the sending node sends the data to the receiving
node.

Disconnecting Two Nodes Figure 5 shows the
operation for disconnecting nodes. To disconnect
two nodes, the user moves the mouse pointer to
the edge and clicks the right button (a). The con-
nection between nodes disappears immediately,
and no further data is transferred. (b). Any
data in the receiving node is expunged.

Deleting a Composition In revising a query, the
user may want to delete compositions. The op-
eration for deleting composition is the same as
the disconnecting operation . The user moves
the pointer to the composition and right-clicks
the mouse.

Making Divergences and Junctions The user
can make divergences and junctions in a query.
When setting up different compositions for a
diverged query, the user can push different
searches forward at the same time. This helps
the user search with multiple queries at the
same time. Figure 6 shows a divergence and
junction. When the user makes a divergence,
the divergence node sends the same data to each
receiving node. When the user lets some queries
combine, the junction node merges the data
from each edge.
The operation for combining or diverging queries
is the same as the one for making connections.

3.3 Weight of filters

The node shows lists the results and sorts the data
based on the weight of placed filters on the query.
The weight of the filter used near the root node in-
creases, because it is reasonable to assume that users
construct queries in the order they believe to be im-
portant.

By assigning a weight to filters, FindFlow supports
the user in finding the needed data.

Results are same

Divergence

Junction

Merge the data

Figure 6: Divergence and junction

3.4 Step-by-Step Indication

FindFlow indicates how each filter influences the
results in a step-by-step manner. When the user
changes constructed query, the thickness of the edges
changes and nodes change their result step by step
from the changed composition to the end of query.
This supports the user in finding how the operation
influences the result, and makes it easy for the user
to understand how data are filtered.

3.5 Packaging

FindFlow has a function for compiling sub-queries
and generating new filters. This function helps the
user in constructing the queries that will be used con-
tinually. Once it is made, the package can be reused
many times. When a query becomes long, this helps
the user in understanding the query.

Figure 7 shows the operation for packaging. To use
the packaging function, the user drags the node to the
toolbox and drops it (a-1). Then, a new package is
generated as a filter(a-2), and the sub-query from the
root node to the dropped node is compiled into the
new package. The user names the generated package,
for instance, “MySearch” (a-3). The user can use
the new package just like a filter. After dragging the
package to the edge (b-1), the user obtains the same
result as the result without a package (b-2).

3.6 Save the State of Searching

FindFlow provides a function for saving the search
status in a file. This supports the user in reusing
previous searches.

Sometimes the user starts a search is similar to a
previous one. If the search can be continued from the
previous one, the user does not have to waste time
constructing similar queries.

FindFlow saves the search status automatically.
To continue a search, the user has to do is choosing
the file. FindFlow reads the file and restores the pre-
vious search immediately, and the user can start the
new search immediately.

4 FindFlow System

Figure 8 shows the structure of the FindFlow sys-
tem. FindFlow consists of an interface module and a

New package is generated
Drag to the toolbox

Name new package
Drag

Result is same

(a-1) (a-2)

(a-3) (b-1) (b-2)

Figure 7: Packaging

database module.
The interface module is operated by the user and it

sends queries to the database module. After receiving
the result from the database module, it shows it to the
user. The interface module comprises the edge, node,
and filter. The user manipulates each to construct a
query. The database module receives the query from
the interface module and converts it into the database
query. After conversion, it sends the query to the
database and receives the result. Then, it converts the
received result into the data for the interface module
and returns the converted data as the result.

When the user operates FindFlow, each node re-
quests the query data and weights of filters from
the sending nodes. The sending node sends these
data, and each edge creates new query data and new
weights from the filter and the received data. After
receiving the new query data and weights, the node
sends the query data to the database module. The
database module receives the query data and converts
it into a database query. It then sends the converted
query to the database server and receives the result.
Database module converts the received result for the
interface module, and returns the converted result to
the node. After receiving the result from the database
module, the node sorts the data based on new weights
of filters. After that, the interface module shows the
result to the user by changing the result in the node,
the thickness of edges, and so on.

5 Application Example

5.1 Searching for Apartments in Tsukuba by
Trial and Error

We made a search system for rental listings in the
city of Tsukuba. We prepared filters for age, layout,
address, rent, and station proximity.

Figure 9 shows screenshots of a user searching for
apartments in Tsukuba. The criteria are:

• Location is “Amakubo”, “Sakura” or “Kasuga”.

• As new as possible.

• Rent as low as possible.

First, FindFlow shows the screen (a), and the
user constructs a query specifying 70,000 yen rent
and Amakubo, Sakuraor Kasuga as the location (b).
Many results are returned, and the user changes the
rent filter, making the rent lower little by little. The
user finds that the lowest rent is 30,000 yen (c).

The user focuses attention on the Kasuga area. He
wants to push forward the search, but every apart-
ment found is older than 30 years. He therefore stops
filtering data (d) and decides to reconsider the whole
query.

The user rearranges the query. The user inserts
a filter with the condition that apartment should be
less than 15 years old (e). He changes the rent filter to
50,000 yen and finds matches with the query (f). He
then changes the age condition by requesting a newer
apartment (g), and finds the apartment to match the
query (h). This listing meets the users requirements.

5.2 Classification of Mails and Files

By regarding the node as a classification folder, Find-
Flow can serve as a classification tool.

Suppose the user wants to search for or classify
some e-mails. FindFlow generates filters automati-
cally from mail headers. The user classifies e-mails
just like in searching and saves the search status after
finishing the classification. The user loads newly re-
ceived e-mails to FindFlow. After loading the saved
status, FindFlow classifies new e-mails by the query
automatically. When the classification does not go
well, the user changes the query partly or entirely.

FindFlow is useful for classifying files, too. The
user can put files in one place and does not have to
classify files with traditional directories. With Find-
Flow, even when new files are added, the user does not
have to be remember where files are placed. FindFlow
automatically classifies files by the queries. Because
the search status has been saved, the user can load
the same status and can find needed files anytime.

Interface Module

Node

Create new query data

Query data

Weights of Filters

Request

Start
Node

Database Module

Converter Database

Result

Query

Result

User

Operates

Sorter

List

Sorted Result

Result

Node

Query Data

Filter

Node

Create new Weights

Figure 8: System

6 Discussion

We had various users try FindFlow. The users were
businessmen, students, or researchers. After the tri-
als, the users were interviewed. The users found that
the operations were simple and easy to understand.
They also reported that it was easy to determine
which conditions were impeding the search and that
it was good that the result was simple. On the neg-
ative side, they mentioned that the screen was too
small and that, although the node shows the result,
it was too small to see and did not contain enough
information.

The screen size problem could be solved by provid-
ing a scrolling function. Scrolling would allow the user
to get more space for query construction. An auto-
matic zooming function would also be useful. When
constructed queries reach the edge of screen, Find-
Flow changes the scale. A zoom would enable users
to zoom in on the screen near the mouse pointer.

7 Conclusions and Future Work

We have developed an interactive visual search inter-
face called FindFlow. FindFlow shows not only fi-
nal results but also intermediate results. The user
can change a query based on the intermediate re-
sults. FindFlow supports query construction, trial-
and-error search, and reuse, enabling the user to con-
struct, recombine and change queries easily, quickly,
and properly. FindFlow can be applied to various
kinds of searches.

We plan to evaluate FindFlow experimentally to
clarify it’s advantages and problems. We are also con-
sidering how to better use FindFlow in cooperation
with the Web and how to improve the methods for
showing data.

References

Jaime Teeven, Christine Alvarado, Devid R. Karger
& Mark S. Ackerman (2004), The Perfect Search

Engine is Not Enough, in ‘Proceedings of Confer-
ence on Human Factors in Computing Systems’,
pp. 415–421.

Angelaccio, M., Catarci, T., & Santucci, G. (1990),
QDB: A Graphical Query Language with Recur-
sion, in ‘IEEE Transactions on Software Engi-
neering’, pp. 1150–1163.

Batini, C., Catarci, T., Costabile, M.F. & Levialdi,
S. (1996), Visual Query Systems: A Taxonomy,
in ‘Proceedings of the 2nd IFIP WG2.6 Working
Conference on Visual Databases’.

Catarci, T., Costabile, M.F. & Levialdi, S. (1993),
On Visual Representations Database Query Sys-
tems, in ‘Proceedings of the Interface to Real
and Virtual Worlds Conference’, pp. 273–283.

Deepa Krishnan & Tosiyasu L. Kunii (1991), A Visual
Query Interface for an Engineering Database, in
‘Database Systems for Advanced Applications’.

Aiken, A., Chen, J., Lin, M., Spalding, M., Stone-
braker, M. & Woodruff, A. (1995), The Tioga-
2 Database Visualization Environment, in ‘Pro-
ceedings of the IEEE Visualization Workshop’.

Degi Young & Ben Shneiderman (1993), A Graphical
Filter Flow Representation of Boolean Queries:
A Prototype Implementation and Evaluation, in
‘Journal of the American Society for Information
Science’, Vol. 44(6), pp. 327–339.

Diansheng Guo (2003), A Geographic Visual
Query Composer (GVQC) for Accessing Federal
Databases, in ‘Proceedings of National Confer-
ence for Digital Government Research’, pp. 397–
400.

Steven L. Tanimoto (2003), Programming in a Data
Factory, in ‘Proceedings of Human Centric Com-
puting Language and Environments’, pp. 100–
108.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Rent: ¥0-¥70,000
Location: Kasuga

Location: Amakubo

Location: Sakura

Change Rent: ¥0-¥30,000

Found only apartments
older than30 years

Oldness: New-15years

Rent: ¥0-¥30,000

Rent: ¥0-¥50,000

Oldness: New-4years

Found

Figure 9: Example of search with FindFlow: Finding an apartment in Tsukuba.

