
AirFlip: A Double Crossing In-Air Gesture using
Boundary Surfaces of Hover Zone for Mobile

Devices

Hiroyuki Hakoda, Takuro Kuribara, Keigo Shima, Buntarou Shizuki, and Jiro
Tanaka

University of Tsukuba, Japan.
{hakoda,kuribara,keigo,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

Abstract. Hover sensing capability provides richer interactions on
mobile devices. For one such exploration, we show a quick double crossing
in-air gesture for mobile devices, called AirFlip. In this gesture, users
move their thumb into the hover zone from the side, and then move
it out of the hover zone. Since this gesture does not conflict with any
touch gestures that can be performed on mobile devices, it will serve
as another gesture on mobile devices with touchscreens where only a
limited input vocabulary is available. We implemented two applications
based on AirFlip. In this paper, we show the results of a comparative
user study that we conducted to identify the performance of AirFlip. We
also discuss the characteristics of AirFlip on the basis of the results.

Keywords: hover gesture, mobile, input method, in-air gesture.

1 INTRODUCTION

Mobile devices with hover sensing capability have recently emerged such as
ELUGA P P-03E and AQUOS PHONE ZETA SH-06E. This capability provides
richer interactions on mobile devices. For example, it allows users to unlock
a pattern lock without touching the touchscreen, accordingly enabling secure
authentication because users do not leave their fingerprints on the touchscreen.
Moreover, the capability can be used to detect a finger’s movement above the
touchscreen, i.e., in-air gestures on mobile devices. However, few studies have
explored in-air gestures in comparison with touch gestures on mobile devices.

For one such exploration, we show a quick double crossing in-air gesture for
mobile devices, called AirFlip, which uses side boundary surfaces of the hover
zone. In this gesture, users move their thumb into the hover zone from the side,
and then move it out of the hover zone (Fig. 1). Since this gesture does not
conflict with any touch gestures that can be performed on mobile devices, it
will serve as another gesture on mobile devices with touchscreens where only a
limited input vocabulary is available. In this study, we conducted a comparative
user study with only touch and Bezel Swipe [1] to identify the performance of
AirFlip.



2 H. Hakoda, T. Kuribara, K. Shima, B. Shizuki, and J. Tanaka

The top view of AirFlip The side view of AirFlip

Hover zone
Side boundary surface

Fig. 1. Overview of AirFlip.

2 RELATED WORK

In-air gestures on various input devices have been explored. For example,
ThickPad [2] is a touchpad that can sense hover gestures with proximity-sensors.
Similarly, Taylor et al. [3] presented a keyboard that senses in-air gestures on the
keyboard. These studies presented in-air gestures on conventional input devices
such as a touchpad and a keyboard. In contrast, we explore in-air gestures above
the touchscreen of mobile devices.

In-air gestures above tabletops have been explored. Interactions in the Air [4]
and Continuous Interaction Space [5] focused on the space above tabletops.
Han and Park [6] proposed hover based zooming interaction above tabletops.
Pointable [7] is an in-air pointing technique on tabletops. Pyryeskin et al. [8]
proposed a system that senses a user’s hand above multi-touch surfaces using
only a diffused surface illumination device. In contrast, we focus on the space
above mobile devices.

In-air gestures above mobile devices have also been explored. Air+Touch [9]
is a synthesis of touch and in-air gestures using an additional depth camera.
Kratz et al. [10] showed a detection algorithm for in-air gestures and the design
space. While these studies utilized hovering in the hover zone, AirFlip utilizes
boundary surfaces of the hover zone. Han et al. [11] proposed Push-Push utilizing
the pressed state and the hover state that does not conflict with a drag operation.
Hover Widgets [12] utilizes movements of a pen above a screen. In contrast,
AirFlip utilizes movements of a finger above a screen.

Crossing has been explored intensively especially to enrich interactions [13–
18]. For example, Bezel Swipe [1] is a drag gesture starting from the bezel of
mobile devices. Nakamura et al. [19, 20] proposed a double crossing gesture for
hand gesture interfaces that crosses a target twice. In contrast, AirFlip is a
double crossing in-air gesture that crosses a side boundary surface of the hover
zone twice.



AirFlip: A Double Crossing In-Air Gesture 3

Fig. 2. Rotation gesture by twirling user’s thumb.

3 DESIGN OF AIRFLIP

AirFlip is a quick double crossing gesture using the boundary surfaces of the
hover zone, and users perform it with the thumb of their holding hand. Fig. 1
illustrates AirFlip. Users move the thumb into the hover zone from the side,
and then move it out of the hover zone quickly. While current in-air gestures
on mobile devices with hover sensing capability utilize motions such as keeping
or moving their finger within the hover zone, AirFlip utilizes the motion that
crosses the boundary surfaces of the hover zone. Moreover, AirFlip adopts a
double crossing gesture because a single crossing gesture may be incorrectly
recognized when users touch the screen. Due to these designs, AirFlip does not
conflict with conventional touch and in-air gestures.

AirFlip has two variations: just flipping the thumb (Fig. 1) and twirling the
thumb (Fig. 2). The former is suitable as a trigger of a single action and thus
can be used as a button; the latter is suitable to adjust a continuous value such
as a rotational angle of a map.

4 IMPLEMENTATION

We implemented AirFlip as an Android application that monitors hover events.
Currently, sensing capability in Android devices begins to generate hover events
when a user’s finger enters the hover zone and continues to generate them
until the user’s finger leaves the zone. Therefore, AirFlip is recognized when
hover events begin to appear and then disappear quickly (600 ms in our current
implementation).

However, AirFlip is incorrectly recognized in näıve implementation for the
following two reasons. First, AirFlip is recognized when users tap the screen
because hover events occur before and after a tap. To address this problem,
AirFlip is ignored when a touch event occurs within 50 ms after hover events
disappear. Second, AirFlip is recognized when users are searching for a target
to touch because their thumb tends to enter and leave the top boundary of the
hover zone frequently in this context. To address this problem, AirFlip is ignored
when their thumb leaves the hover zone more than 600 ms after their thumb has
entered it. These realize stable recognition of both AirFlip and conventional
touch gestures.



4 H. Hakoda, T. Kuribara, K. Shima, B. Shizuki, and J. Tanaka

5 APPLICATION

We present two applications of AirFlip. To test these application, we used
ELUGA P P-03E (Android 4.2.2) as a mobile device with hover sensing
capability.

5.1 Rotating a map in map applications

We implemented a map viewer that adopts AirFlip. In this application, users can
rotate a map by using AirFlip (Fig. 3); users can change the direction of rotation
by changing the direction of twirl. Note that in conventional map applications,
users touch an area of a map with two fingers and drag both fingers in a circular
motion to rotate it. In contrast, users can rotate a map by using only one hand:
i.e., users hold a device with one hand and perform AirFlip using the thumb of
that hand.

5.2 Switching tabs in web browsers

Users can use AirFlip to switch tabs to the next (Fig. 4). In conventional web
browsers, users need to open a list and choose a tab from it. In contrast, users
can switch tabs (i.e., go to the next tab and go back to the previous tab) quickly
in this application, because AirFlip is only a double crossing gesture. Users can
change the direction of switching by changing the direction of twirl.

6 EVALUATION

We conducted a user study to measure the speed and usability of AirFlip. The
user study is designed to measure the above metrics under the assumption that
users browse web pages by selecting links and switch tabs in a web browser
repeatedly.

6.1 Participants

Fourteen participants took part in the experiment as volunteers. However,
we eliminated the data of two participants because we failed to collect their
experimental data correctly. As the result, we used the data of 12 participants
(eight males and four females) aged from 20 to 25 (mean = 22.7; = 1.29). They
all used their mobile devices on a daily basis and were all right-handed. They
had been using mobile devices for 11 to 99 months (mean = 34.8; SD = 24.9).

6.2 Apparatus

We used a mobile device (ELUGA P P-03E, OS: Android 4.2.2, size: height
132 mm × width 65 mm × thick 10.9 mm) with an approximately 4.7 inch
touchscreen (resolution: 1080 × 1920 pixels).



AirFlip: A Double Crossing In-Air Gesture 5

Fig. 3. Rotating a map in map applications.

Fig. 4. Switching tabs in web browsers.

6.3 Methods

We compared the performance of the following three methods for switching tabs:

AirFlip The participants switch tabs by AirFlip. They move their thumb into
the hover zone from the right side, and then move it out of the hover zone
quickly. A hover trajectory is displayed on the display of the device as visual
feedback when users perform AirFlip.

Bezel Swipe [1] The participants switch tabs by Bezel Swipe. They start a
swipe gesture from the right bezel to the left. A touch trajectory is displayed
on the display of the device as visual feedback when users perform Bezel
Swipe.

Touch The participants switch tabs by tapping one of the tabs.

6.4 Procedure

We asked the participants to sit on a chair and hold a mobile device in their
right hand. To control the experimental conditions between participants, we also
asked the participants to hold the device without supporting it by using a desk or
their bodies. We asked the participants to perform this user study as accurately
and rapidly as possible.



6 H. Hakoda, T. Kuribara, K. Shima, B. Shizuki, and J. Tanaka

Current tab

Button

Fig. 5. Overview of the application for the user study. In this user study, there are two
tabs in the web browser.

Each participant was told the goals of the user study. We also explained
how to perform the three methods. Then a participant practiced each method
for more than one minute. The user study started when the participant pressed
the “Start” button displayed on the device’s touchscreen. First, she touched a
button randomly displayed on a cell in the 3 × 3 grid (Fig. 5). After that, she
switched tabs by using one of the methods. In each session, she performed 18
trials (9 places × 2 tabs). She completed three sessions for each method. Thus,
she performed 162 trials (3 sessions × 3 methods × 9 places × 2 tabs) in this
user study.

The order of methods was counter-balanced across participants. After all
trials were finished, we asked the participants to complete a questionnaire:
they answered four five-point Likert scale questions (1 = strongly disagree,
5 = strongly agree) and gave reasons for their scores. The participants took
about 20 minutes to complete this user study.

6.5 Results and Analysis

Fig. 6 shows task completion time of all methods, which is defined as the elapsed
time between pressing a button and switching tabs. As this figure shows, the
fastest method was Touch (476 ms) and the second fastest was Bezel Swipe
(479 ms). AirFlip was 912 ms, approximately 1.9 times slower than the other
methods.

Fig. 7 shows the results of questionnaires. Interestingly, while the accuracy
of AirFlip is subjectively evaluated as the lowest, the participants felt AirFlip
to be a quick gesture because its quickness is evaluated positively (4.0). On the
other hand, by taking into account that AirFlip is rated the same as Touch
in terms of easiness and preference, the participants were not considered to be



AirFlip: A Double Crossing In-Air Gesture 7

0

500

1000

1500

2000

2500

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 AVE

Ta
sk

 C
o

m
p

le
ti

o
n

 T
im

e
 (

m
s)

Touch Bezel Swipe AirFlip

Fig. 6. Task completion time for all methods.

satisfied with AirFlip. We analyzed the comments from the participants and
found that this was due to too much incorrect recognition of AirFlip (that is,
the system failed to recognize AirFlip while users believed they performed the
gesture correctly). Eleven participants mentioned this problem. Moreover, high
variance of task completion time would be caused by this problem. Consequently,
if we can reduce such errors of AirFlip, its performance may improve.

7 DISCUSSION

While we found much incorrect recognition lowered the performance of AirFlip in
the evaluation, we considered that two factors of this problem can be addressed
to improve the performance.

7.1 Accidental touching

We observed that participants often touched the touchscreen accidentally while
performing AirFlip. This problem may have been caused by the hover zone being
too narrow: hover zone is so low that hovering a finger above the screen may
be difficult for users because they need to keep hovering their thumb in the
hover zone when they perform AirFlip. In the questionnaire, the participants
commented that the height of the hover zone is difficult to determine, and too
low to perform AirFlip. Therefore, the performance of AirFlip will be improved if
the hover sensing capability of mobile devices is improved to sense user’s fingers
at higher positions.



8 H. Hakoda, T. Kuribara, K. Shima, B. Shizuki, and J. Tanaka

1

2

3

4

5

Easiness Quickness Accuracy Preference

Touch Bezel Swipe AirFlip

Fig. 7. The questionnaire results for the three methods (5-point Likert scale).

Moreover, we plan to attach a protective case to a mobile device shown in
Fig. 9. This case is designed so that its side is higher than the surface of the
device. With this case, users will be able to use AirFlip by flipping the side of
the case.

7.2 Incorrectly thinking one’s thumb has moved out of the hover
zone

We also observed that participants incorrectly perceived that they had moved
their thumb out of the hover zone (Fig. 8a) to perform AirFlip although the
thumb stayed within the hover zone (Fig. 8b). In this case, AirFlip was not
recognized because hover events continued to occur. To address this problem,
we plan to provide users with feedback such as vibration when users move their
thumb out of the hover zone. Accordingly, users can be made aware of the
boundary surfaces of the hover zone and thus can perform AirFlip stably.

8 CONCLUSION

We presented a quick double crossing in-air gesture for mobile devices called
AirFlip. We conducted a user study to measure its performance. From the
results, AirFlip is slower than the other methods. The data and the participants’
comments suggest this result is caused by incorrect recognition of AirFlip due
to an inability to sense user’s fingers in high positions. For immediate future
work, we plan to incorporate a haptic feedback and measure the performance
of AirFlip using a protective case whose side is higher than the surface of the
device. Furthermore, we also plan to implement a mobile device with hover
sensing capability that can sense user’s fingers in higher positions by using a
vision-based approach.



AirFlip: A Double Crossing In-Air Gesture 9

a b : Hover events

: Out of the 

  hover zone

Fig. 8. Incorrect perception of thum-
b’s position. Red circles show positions
of hover events when users incorrectly
thought that they had moved their thumb
out of the hover zone; red rings show
required trajectory to perform AirFlip.

Hover zone

Case

Fig. 9. A mobile device in a protective
case. Users move their thumb into the
hover zone by flipping the side of the case.

References

1. Volker Roth and Thea Turner. Bezel Swipe: Conflict-free scrolling and multiple
selection on mobile touch screen devices. In Proc. CHI ’09, pp. 1523–1526.

2. Sangwon Choi, Jiseong Gu, Jaehyun Han, and Geehyuk Lee. Area gestures for a
laptop computer enabled by a hover-tracking touchpad. In Proc. APCHI ’12, pp.
119–124.

3. Stuart Taylor, Cem Keskin, Otmar Hilliges, Shahram Izadi, and John Helmes.
Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard. In Proc.
CHI ’14, pp. 1695–1704.

4. Otmar Hilliges, Shahram Izadi, Andrew D. Wilson, Steve Hodges, Armando
Garcia-Mendoza, and Andreas Butz. Interactions in the Air: Adding further depth
to interactive tabletops. In Proc. UIST ’09, pp. 139–148.

5. Nicolai Marquardt, Ricardo Jota, Saul Greenberg, and Joaquim A. Jorge. The
Continuous Interaction Space: Interaction techniques unifying touch and gesture
on and above a digital surface. In INTERACT (3), Vol. 6948 of Lecture Notes in
Computer Science, pp. 461–476, 2011.

6. Seungju Han and Joonah Park. A study on touch & hover based interaction for
zooming. In CHI EA ’12, pp. 2183–2188.

7. Amartya Banerjee, Jesse Burstyn, Audrey Girouard, and Roel Vertegaal.
Pointable: An in-air pointing technique to manipulate out-of-reach targets on
tabletops. In Proc. ITS ’11, pp. 11–20.

8. Dmitry Pyryeskin, Mark Hancock, and Jesse Hoey. Comparing elicited gestures
to designer-created gestures for selection above a multitouch surface. In Proc. ITS
’12, pp. 1–10.

9. Xiang ’Anthony’ Chen, Julia Schwarz, Chris Harrison, Jennifer Mankoff, and
Scott E. Hudson. Air+Touch: Interweaving touch & in-air gestures. In Proc.
UIST ’14, pp. 519–525.

10. Sven Kratz and Michael Rohs. HoverFlow: Expanding the design space of around-
device interaction. In Proc. MobileHCI ’09, pp. 4:1–4:8.

11. Jaehyun Han, Sunggeun Ahn, and Geehyuk Lee. Push-Push: A two-point
touchscreen operation utilizing the pressed state and the hover state. In Proc.
UIST’14 Adjunct, pp. 103–104.



10 H. Hakoda, T. Kuribara, K. Shima, B. Shizuki, and J. Tanaka

12. Tovi Grossman, Ken Hinckley, Patrick Baudisch, Maneesh Agrawala, and Ravin
Balakrishnan. Hover Widgets: Using the tracking state to extend the capabilities
of pen-operated devices. In Proc. CHI ’06, pp. 861–870.

13. Stuart Pook, Eric Lecolinet, Guy Vaysseix, and Emmanuel Barillot. Control menus:
Excecution and control in a single interactor. In CHI EA ’00, pp. 263–264.

14. François Guimbretiére and Terry Winograd. FlowMenu: Combining command,
text, and data entry. In Proc. UIST ’00, pp. 213–216.

15. Johnny Accot and Shumin Zhai. More than dotting the i’s — foundations for
crossing-based interfaces. In Proc. CHI ’02, pp. 73–80.

16. Pierre Dragicevic. Combining crossing-based and paper-based interaction
paradigms for dragging and dropping between overlapping windows. In Proc. UIST
’04, pp. 193–196.

17. Yuexing Luo and Daniel Vogel. Crossing-based selection with direct touch input.
In Proc. CHI ’14, pp. 2627–2636.

18. Chen Chen, Simon T. Perrault, Shengdong Zhao, and Wei Tsang Ooi. BezelCopy:
An efficient cross-application copy-paste technique for touchscreen smartphones.
In Proc. AVI ’14, pp. 185–192.

19. Takashi Nakamura, Shin Takahashi, and Jiro Tanaka. Double-Crossing: A new
interaction technique for hand gesture interfaces. In Computer-Human Interaction,
Vol. 5068 of Lecture Notes in Computer Science, pp. 292–300, 2008.

20. Takashi Nakamura, Shin Takahashi, and Jiro Tanaka. The selection technique
of hand gesture in large screen environment—proposal of double-crossing and
comparison with other techniques—. The Institute of Electronics, Information and
Communication Engineers Transactions, Vol. J96-D, No. 4, pp. 978–988, 2013. (In
Japanese).


