
Developing a Graphical Definition System for a Spatial Parser Generator

Hiroaki Kameyama, Buntarou Shizuki, and Jiro Tanaka
Department of Computer Science, University of Tsukuba

1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan
{ kame, shizuki, jiro}@iplab.is.tsukuba.ac.jp

Abstract
Spatial parser generators automatically generate a

parser of visual languages by providing grammars.
The grammar is specified using text. The grammar
would be easier to understand if we used a figure to
input the grammar. We describe an approach in this
paper that graphically defines grammar. Direct ma-
nipulation is used to define grammar in our approach,
which helps the user understand the meaning. We im-
plement the GIGA system, which enables the user to
define the grammar by drawing figures. GIGA displays
each element of a rule visually. The user can define the
grammar easily and can understand the grammar visu-
ally. Moreover, GIGA outputs the defined visual system
to a file written in CMG text form. The user can exe-
cute the system by inputting the file into Eviss.

1. Introduction
A parser for conventional programming language

analyses the input text based on the grammar. Parsing
is the process of applying production rules to figure el-
ements. Yacc [7] and Bison [4] generated such a parser
automatically from the specification of the grammar.

The visual system, similar to a diagram editor, can
handle figures. The input of the visual system includes
rectangles, circles, and lines. Spatial parser generators
automatically generate a parser of visual languages by
providing grammar. Eviss [1] and VIC [5] are exam-
ples of such spatial parser generators.

The grammar input is defined in Eviss using text. It
is difficult to understand the meaning of the grammar
if it is given in textual form. It would be easier to un-
derstand if we used figures to input the grammar and
edited them directly.

Therefore, we propose an approach that defines
grammar using figures, and we implement the GIGA
system. The GIGA system enables the user to define
the components of the rule by drawing correspond-
ing figures. GIGA infers and displays the constraints
based on the positional relationships among the fig-
ures. GIGA enables more intuitive and interactive
ways for the user to define the grammar.

2. Defining Visual Systems

2.1. Extended CMG
The spatial parser generator Penguins [2, 3] uses

Constraint Multiset Grammars (CMG) [8] to define the
grammar of visual systems. CMG consists of a set of
terminal symbols (calledcomponents), a set of non-
terminal symbols, a distinctive start symbol, and a set
of production rules. The terminal and non-terminal
symbols have variousattributes. Production rules are
used to rewrite a multiset of tokens (instances of termi-
nal or non-terminal symbols) for a new symbol. The
constraint maintains the relationships between the at-
tributes of the tokens. Chok reported on editors, such
as flow chats, state transition diagrams, and mathemat-
ical expressions [3], as examples of a visual system
described with CMG. Analyzing visual languages is
not sufficient for visual systems. Actual visual sys-
tems must execute statements according to the result
of the analysis and redraw the figures, preserving the
semantic relationships between the figure elements.

We extended the original CMG to includeaction,
which is defined as “a script program executed when
the production rule is applied.” We can specify arbi-
trary actions in the Extended CMG [1], such as com-
puting values and rewriting figures.

2.2. The Problems in Defining Visual Systems
A spatial parser generator produces parsers of visual

languages by providing the grammar. Previous spatial
parser generators treated the CMG defined using text.
A considerable portion of the specification in Extended
CMG includes two-dimensional information, such as
the shapes and positional relations of figures. It is dif-
ficult to read and understand these rules if we describe
them using text. Moreover, the following problems oc-
cur.

• The description of constraints is complicated.
We must input many constraints to define the rule.
We also must determine whether these constraints
are consistent.



• The definition of attributes is complicated.
The coordinates and size of a figure are used as
attribute values. In many cases, a non-terminal
symbol inherits the attribute of the component.
However, we must define the attributes one by
one.

• It is difficult to predict the appearance of the
screen after an action is performed.
The action redraws the figure. We cannot antic-
ipate the appearance of the whole figure after an
action is performed based on textual rules.

2.3. The Proposed Techniques
We took the following approaches to solve the above

problems.

• We define the components by drawing the fig-
ures directly.
The user inputs the figures as with general draw
tools.

• We define the constraints by arranging the
components so that the constraints were satis-
fied.
The system displays the constraints on the screen
as the user edits the figures. We use the follow-
ing techniques for the system to infer unnecessary
constraints.

– The user associates the related figures ex-
plicitly, and the system infers the constraints
from the figures that are associated.

– The user chooses the attributes required for
the definition of constraints. The system in-
fers the constraints from the attributes of the
chosen figures.

• We define the attribute of a non-terminal sym-
bol by selecting the attribute of the component.
The user selects the attributes of the input figure
that were inherited.

• We define the action by editing the figures.
The system copies the figures and the user then
edits them. The system outputs actions from the
operation history.

We can understand the grammar by just looking at
the screen when using these techniques.

3. Graphical Definition System GIGA

3.1. Implementing the GIGA system
We implemented the GIGA system (Graphical

userInterface for Constraint MultisetGrammars with

Figure 1.Snapshot of GIGA

Action. GIGA means cartoon in Japanese), which en-
ables the user to define a rule by drawing the figures.
A snapshot of GIGA is provided in Figure1.

The GIGA system is implemented in 100% pure
Java language. Therefore, the user is able to use
GIGA on any platform. The code size of the sys-
tem is approximately 5000 lines. GIGA consists of
figure-editing modules, rule-generating modules and
rule-output modules. The figure-editing modules treat
the input figures. Elementally, the figures are imple-
mented as the figure class. The rule-generating mod-
ules produce rules by comparing the attribute variables
of the figures. We implement each constraint as a con-
straint class. The rule-output modules translate the
grammar into text form and output it to a file.

3.2. Defining Components
The user inputs the figures selected from the tool

panel to define the components of the rule. It is pos-
sible to perform operations such as movement in the
figure, modification of size, and deletion, as with gen-
eral graphic tools. The figure is given a unique identi-
fier automatically at this time.

It is also possible to input a non-terminal symbol as
a component. The user first selects the “non-terminal”
button in the tool panel. A list of non-terminal symbols
already defined is displayed and the user selects the
required one.

Attribute Selection A figure has various attributes. It
is necessary to choose the required attribute when
the user defines the rule. The attribute that has
the coordinate value (such as the center point of
a rectangle) is displayed as a circle in GIGA. The
user clicks the circle of the required attribute if he
or she needs the attribute. The attributes, such as



color, width, or height, are selected by modifying
the value of the respective attribute.

3.3. Defining Constraints
The user defines the constraint by editing the figures

and indicating the intended constraint. GIGA displays
the following constraints and enables the user to easier
understand the defined constraint.

• The coordinates of the two attributes are equal
GIGA displays a red circle, which represents the
attribute (Figure2).

• The x–coordinates of the two attributes are
equal
GIGA displays a red guideline that connects two
attributes (Figure3). This works in the same way
in the case of y–coordinates.

• The sizes of the two attributes are equal
GIGA displays the constraint using an arrow (Fig-
ure4).

• A figure always exists on the right side of an-
other figure
GIGA displays an arrow that connects two at-
tributes.

GIGA infers the constraint interactively. Therefore,
if the constraint is not satisfied between the figures,
GIGA stops displaying it. Thus, it is easy to identify
which type of constraint is defined.

GIGA infers the constraint between the attributes
that the user associates to avoid inferring an unneces-
sary constraint. Association is defined by moving a
figure and piling up it on another figure, and it holds
even if the figures separate.

3.4. Defining Attributes
The user can define the attributes of a non-terminal

symbol by clicking on the attribute of the component.
The user can also define the other attributes by in-
putting the arithmetic expression of the attribute into
the circle symbol using text.

3.5. Defining Actions
GIGA displays the two regions surrounded by the

square frame shown in Figure6 to define the action.
GIGA copies the figures of components in the left re-
gion to right region. The user edits the copied figures.
GIGA infers the action from the difference between the
figures. The types of actions we can use in GIGA are
“create,” “delete,” and “alter.” GIGA infers each action
as follows.

Figure 2.Displays the equal constraint (1)

Figure 3.Displays the equal constraint (2)

Figure 4.Displays the equal constraint (3)

Figure 5. Displays the constraint of the right-and-left
relation

Figure 6.Definition of action



Figure 7. Definition of the State Transition Diagram
Editor

• When a figure does not exist in the original re-
gion but exists in the copied region, GIGA gener-
ates the “create” action and infers the position in
the new figures, utilizing the positions of the other
figures.

• GIGA generates the “alter” action if the attribute
of the figure in the original region is changed in
the copied region.

• The user deletes the figures in the copied region
to define the “delete” action.

4. Executing Visual Systems

4.1. An Example of Defining a Visual System
We will use the rule of the state transition diagram

editor as an example. The state transition diagram edi-
tor is defined by the following six production rules.

1. A non-terminal symbol “arc” consists of a line
and text in the center of it.

2. A non-terminal symbol “start arc” consists of a
line. The line must be red.

3. A non-terminal symbol “state” consists of a text
string and two circles. This rule expresses the fi-
nal state.

4. A non-terminal symbol “state” consists of a circle
and a text string. The circle must be red. This rule
expresses the normal state.

5. A non-terminal symbol “state” consists of a cir-
cle, a text string, and a start arc. This rule ex-
presses the start state.

1: arc(point start, point end,
2: point mid, string text) ::=
3: L:line, T:text where(
4: L.mid == T.mid
5: ){
6: start = L.start;
7: end = L.end;
8: mid = L.mid;
9: text = T.text;

10: }{}
11:
12: start_arc(point end) ::=
13: L:line where(
14: L.color == red
15: ){
16: end = L.end;
17: }{}
18:
19: state(pont mid, integer radius,
20: string name, string kind) ::=
21: C1:circle, C2:circle, T:text where(
22: C1.mid == C2.mid &&
23: C1.radius > C2.radius &&
24: T.mid == C1.mid
25: ){
26: mid = C1.mid;
27: radius = C1.radius;
28: name = T.text;
29: kind = "final";
30: }{}
31:
32: state(pont mid, integer radius,
33: string name, string kind) ::=
34: C:circle,T:text where (
35: C.color == "red" &&
36: T.mid == C.mid
37: ){
38: mid = C.mid;
39: name = T.text;
40: kind = "normal";
41: }{}
42:
43: state(point mid, integer radius,
44: string name, string kind) ::=
45: A:start_arc, C:circle, T:text where(
46: C.color == red &&
47: A.end == C.mid &&
48: T.mid == C.mid
49: ){
50: mid = C.mid;
51: name = T.text;
52: kind = "start";
53: }{}
54:
55: transition(string start, string label
56: string end) ::=
57: A:arc, exist S1:state, S2:state where(
58: A.start == S1.mid &&
59: A.end == S2.mid
60: ){
61: start = S1.name;
62: label = A.text;
63: end = S2.name;
64: }{}

Figure 8.The specification of state transition diagram
with Extended CMG.



6. A non-terminal symbol “transition” consists of an
arc and two states. This rule expresses the state
transition.

Figure7 depicts the screen after the definition of the
six rules of the state transition diagram editor.

GIGA can translate a defined rule into textual form
and output it to a file. Figure8 illustrates the file output
by GIGA.

Lines 1 to 10 define production Rule 1. Lines 1
and 2 present the attributes of the non-terminal sym-
bol “arc.” Line 3 indicates that the node consists of
a circle and a text string. Line 4 describes the con-
straints. It indicates that the center of the text string is
on the center of the line. Lines 6 to 9 define the values
of the attributes. Line 6 states that “start” of the “arc”
is equal to “start” of “L.” Line 7 states that “end” of the
“arc” is equal to “end” of “L.” Line 8 states that “mid”
of the “arc” is equal to “mid” of “L.” Line 9 comprises
a script to substitute the attribute “text” of “T” for the
attribute value of the “state.”

4.2. Executing the Visual System by Eviss
We use the spatial parser generator Eviss to execute

the visual system that was defined using GIGA.
Eviss is a visual system that has a spatial parser gen-

erator. Eviss can generate spatial parsers for visual lan-
guages by providing the grammar. Eviss can parse the
figures spatially if a certain grammar written in text
is input. When a production rule is applied, Eviss re-
draws the figure elements so that the constraints be-
tween them always hold. Actions are also executed
when the production rule is applied.

GIGA outputs the defined visual system to a file
written in the text form of Extended CMG. The user
can execute the system by inputting the file into Eviss.
The execution of the defined state transition diagram
editor is illustrated in Figure9. The relation of each
figure is maintained by the constraint solver in Eviss.
If the user moves a figure recognized as “state,” then
a figure recognized as “arc” is moved by Eviss so that
the “end” of “arc” and the “mid” of “state” will have
the same coordinates.

5. Discussion
We have defined various visual systems as follows

using Extended CMG [1, 5].

• The visual system (Calculation Tree) for editing a
calculation tree and executing it.

• The visual system (Stack) for editing a stack as a
figure and executing it.

• The visual shell (VSH) for visualizing a shell with
the function of a pipe.

• The interface builder (GUI) for editing GUI parts,
such as a scroll bar and a button.

• The subset of visual system HI-VISUAL for spec-
ifying operation by piling up two or more icons
that express the file and the command.

• The subset of visual system VISPATCH [6],
which defines the rule using figures and rewrites
figures by operations of the user, such as a mouse
event.

We indicate the number of rules, constraints, at-
tributes, and actions in these visual systems described
by GIGA in Table1.

A large portion of the specification of Extended
CMG is two-dimensional information, such as the
form and the positional relation of the figures listed in
Table1. Eighty percent of the formula of constraints
is the constraint that uses the positional attribute of a
figure. Fifty percent of the formula of actions is the
rewriting rule. Eighty percent of the attributes of a non-
terminal symbol is an attribute of a position.

This demonstrates that the graphical definition tech-
nique of GIGA is effective in many situations.

6. Related Works
Penguins [2, 3] is a spatial parser generator that pro-

duces an editor that supports the creation, manipula-
tion, and parsing of diagrams from grammatical spec-
ifications. Writing textually is one way of inputting
CMG in Penguins. If the type of a component is
changed, the user must rewrite most of the rule.

TRIP3 [10, 9] is a system that processes the figure by
the constraint. A TRIP3 user describes the relationship
between the figures and the application data. TRIP3
can draw figures from the text and can create texts from
the figures using the relationship. However, the user
cannot define a new non-terminal symbol.

7. Conclusion
We proposed an approach in this paper that defines

grammar using figures and we implemented the GIGA
system. The GIGA system enables a user to define the
components of a rule by drawing corresponding fig-
ures.

GIGA infers the constraints from the positional re-
lationships among the figures edited by the user and
displays them. GIGA infers the actions from the differ-
ence between the screen before an action is performed
and the screen after an action is performed. GIGA out-
puts the defined visual system to a file written in the
text form of Extended CMG. The user can execute the
system by inputting the file into Eviss.

A user can define grammar easily using the GIGA
system and can understand the grammar visually.



Figure 9.Execution of State Transition Diagram Editor

Table 1.The number of rules that GIGA can define
Num. of rules Number of constrains Number of attributes Number of actions

Calculation Tree 2 7/7 (100%) 6/8 (75%) 5/5 (100%)
Stack 4 5/5 (100%) 12/18 (67%) 2/6 (34%)
VSH 11 35/55 (64%) 10/29 (34%) 0/1 (0%)
GUI 14 72/85 (85%) 58/100 (58%) 1/1 (100%)

HI-VISUAL 15 23/43 (65%) 32/50 (64%) 4/14 (29%)
VISPATCH 24 112/134 (84%) 65/100 (65%) 3/5 (60%)

References
[1] Akihiro Baba and Jiro Tanaka. Eviss: A visual

system having a spatial parser generator. InPro-
ceedings of Asia Pacific Computer Human Inter-
action, pages 158–164, July 1998.

[2] Sitt Sen Chok and Kim Marriott. Automatic con-
struction of user interfaces from constraint mul-
tiset grammars. InProceedings of IEEE Sympo-
sium on Visual Language, pages 242–249, 1995.

[3] Sitt Sen Chok and Kim Marriott. Automatic con-
struction of intelligent diagram editors. InPro-
ceedings of ACM Symposium on User Interface
Software and Technology, pages 185–194, 1998.

[4] Robert Corbett and Richard Stallman. Bison:
Gnu parser generator. Texinfo documentation,
Free Software Foundation, Cambridge, Mass,
1991.

[5] Kenichiro Fujiyama, Kazuhisa Iizuka, and Jiro
Tanaka. Vic:cmg input system using example
figures. InProceedings of International Sympo-
sium on Future Software Technology (ISFST’ 99),
Nanjing, China, pages 67–72, October 1999.

[6] Yasunori Harada, Kenji Miyamoto, and Rikio
Onai. Vispatch:graphical rule-based language
controlled by user event. InProceedings of

the 1997 IEEE Symposium on Visual Languages,
1997.

[7] Steven C. Johnson. Yacc: Yet another com-
piler compiler. InUNIX Programmer’s Manual,
volume 2B, pages 353–387. Holt, Rinehart, and
Winston, 1979.

[8] Kim Marriott. Constraint multiset grammars. In
Proceedings of the IEEE Symposium on Visual
Languages, pages 118–125, 1994.

[9] Shin Takahashi, Satoshi Matsuoka, Tomihisa Ka-
mada, and Akinori Yonezawa. A general frame-
work for bi-directional translation between ab-
stract and pictorial data. ACM Transactions
on Information Systems, 10(4):408–437, October
1992.

[10] Shin Takahashi, Satoshi Matsuoka, Akinori
Yonezawa, and Tomihisa Kamada. A general
framework for bidirectional translation between
abstract and pictorial data. InProceedings of the
ACM Symposium on User Interface Software and
Technology, volume 4, pages 165–174, Novem-
ber 1991.


	1 Introduction
	2 Defining Visual Systems
	2.1 Extended CMG
	2.2 The Problems in Defining Visual Systems
	2.3 The Proposed Techniques

	3 Graphical Definition System GIGA
	3.1 Implementing the GIGA system
	3.2 Defining Components
	3.3 Defining Constraints
	3.4 Defining Attributes
	3.5 Defining Actions

	4 Executing Visual Systems
	4.1 An Example of Defining a Visual System
	4.2 Executing the Visual System by Eviss

	5 Discussion
	6 Related Works
	7 Conclusion

