
Data Unification on a Dataflow Visual Language for VJing

Atsutomo Kobayashi, Buntarou Shizuki and Jiro Tanaka
Department of Computer Science

University of Tsukuba
Tennodai 1-1-1, Tsukuba, Ibaraki, Japan

{atsutomo,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

Abstract—We have been developing ImproV, a dataflow
visual language system for VJing, which is a form of live
performance involving simultaneous manipulation of imagery.
The dataflow of ImproV represents a processing flow of video
data and video effects that are familiar to performers. ImproV
is designed to construct a combination of several video effects
on the fly, enabling performers to create new video effects
while VJing. We previously conducted a user study for the
first prototype of this system. The results show that two data
types of dataflow confuse performers and that connecting nodes
is time consuming. Therefore, we unified the data types into
a single type calledVideo to simplify dataflow and developed
adjustment knobs to reduce the frequency of node connecting.

The Video type, which is a sequence of images, is used
to represent not only processing the target video but also
parameters of video effects such as radius of blur and distance
of translation. An adjustment knob on the input port is a
new dataflow editing user interface for adjusting an effect
parameter or opacity of a video flowing through the dataflow.
In ImproV, all input ports on all nodes have an adjustment
knob. These adjustment knobs allow performers to quickly
fade video and adjust parameters.

Keywords-VJ; VJing; live video performance; DJ; DJing;
image processing; end-user programming;

I. I NTRODUCTION

VJing is a form of live video performance and played
mostly in night clubs. Performers of VJing are called VJs.
Similar to DJing in a night club, VJing requires a VJ to keep
playing videos improvisationally without interruption during
the performance. The task includes choosing a video suitable
to the mood and music, which dynamically changes during
the performance, and seamlessly replacing the current video
to the new one. Additionally, some visual effects (e.g., blur,
and transformation) might be applied to the video before
replacing.

To this end, a VJ uses one (or more in some cases) video
mixer with multiple video inputs. When the VJ wants to
change a video to another, he/she connects the new video
source to an unused video input of the mixer while playing
the original video with another video input, and seamlessly
replaces the video with the new one by adjusting the knobs
on the mixer and effectors. Lew [1] analyzed this task and
found that it consisted of three steps:

STEP 1: Media retrieval
STEP 2: Preview and adjustment

STEP 3: Live manipulation

In traditional VJing, STEP 1 involves just choosing a pre-
composed video the VJ prepared before the performance,
and pre-defined video effects are chosen and applied in
STEP 2. Then, the VJ starts showing the new video in
STEP 3.

In contrast to such traditional VJing, we wanted to extend
STEP 1 to enable a VJ to construct a new video effects
structure by combining several video effects on the fly, giv-
ing him/her more chances to have the performance be truly
improvisational. For this purpose, we developed ImproV, a
datafow visual language system for VJing. With ImproV,
the sole requirement for a VJ before a performance is to
prepare simple videos. During the performance, the VJ can
improvisationally create various effects from the prepared
videos using ImproV’s visual language.

We developed the first prototype of ImproV, whose lan-
guage uses two data types,Video andValue [2]. To evaluate
the first prototype, we conducted a user study with five
professional VJs. For operational tests, the first author, who
is a professional VJ, and an amateur VJ performed at actual
musical events. Figure 1 shows one of the VJs using the first
prototype at a jazz concert.

Figure 1. VJing with ImproV

As a result of the user study and operational tests, we
found that while the dataflow diagram of ImproV is un-
derstandable for VJs, using two data types increases visual
complexity of dataflow editing; thus, making the editing
interface confusing. Moreover, connecting nodes is time
consuming. To simplify dataflow editing, we unified the
two data types into a single type calledVideo. To reduce



the frequency of node connecting, we developed adjustment
knobs located on each input port that enable VJs to quickly
adjust the input values.

After a brief description of the first prototype of ImproV,
we explain the user study of the prototype. We then describe
the unification of the two data types into a single type
calledVideo and give examples that characterize this type.
Next, we explain the adjustment knobs. Finally, we discuss
possibilities of applying the unification of data types and
adjustment knobs to dataflow visual language systems for
other domains.

Figure 2. Dataflow of first prototype

II. F IRST PROTOTYPE

ImproV is a video composing system. It provides a
dataflow visual language, in which a node represents a video
source, a video effect, or an output (or preview) screen.
ImproV supports video files (including still images in Jpeg,
GIF, and PNG), USB cameras, and audio inputs from sound
cards. After data, video and audio, are captured, they are
translated into images. All effects to the data are then
processed in the graphics processing unit. Figure 2 shows
an example of the dataflow composed on the first prototype
of ImproV. All nodes have an output port on the top right
and some have input port(s) listed on the left side.

In Figure 2, a video is rotated. The video file is imported
using theVideo File node, which reads its video file and
repeatedly outputs the video stream frame-by-frame to its
output port. The video is previewed using thePreview
Screen node, which shows the content of the video on
the dataflow editor, rotated using theRotation node, and
the rotation angle is specified using theSlider node. The
Angle input port on theRotation node accepts theValue
type, which is a sequence of scalar values, and the other
input port accepts theVideo type, which is a sequence
of images. Finally, the result of theRotation node is
output using theOutput Screen node, which represents
the display for the audience.

To create a node, a VJ chooses a node type from the
GUI menu. Dragging from an output port to an input port
connects the nodes, i.e., the action creates an edge between
the nodes. Immediately after they are connected, the data
begin to flow from the output port to the input port. In
ImproV, output can fork to multiple inputs, and multiple
outputs can be merged through mixer nodes corresponding
to a blending mode, for example, alpha blending or addition
blending.

III. U SERSTUDY FOR FIRST PROTOTYPE

We have conducted a user study for the first prototype
of ImproV. The purpose of the user study was to confirm
that the dataflow diagram is understandable for VJs, or those
who have knowledge of video authoring, and to evaluate the
operability of ImproV.

Five professional VJs (with experience of paid VJing)
who all have knowledge of Adobe After Effects (AE) par-
ticipated. The participants were first interviewed about their
experience in VJing and skills with video authoring tools.
Then, they participated in Experiment 1. After Experiment 1,
they were told about ImproV and freely used ImproV for
practice. Then, they participated in Experiment 2. Finally,
they filled in a questionnaire.

Experiment 1

In Experiment 1, the participants were shown a dataflow
diagram of ImproV and asked what the dataflow diagram
expressed. Since Experiment 1 was conducted to confirm
that a dataflow diagram is understandable for VJs, no
information about ImproV was provided to the participants.
To make the answers accurate, the participants were asked to
construct a corresponding video processing structure using
AE. Figure 3 is the dataflow diagram from Experiment 1.

Figure 3. Dataflow diagram from Experiment 1

Experiment 2

In Experiment 2, the participants performed the following
three tasks in both ImproV and AE:

Task 1Apply blur effect to the video displayed in the main
output.

Task 2Merge two paths of video streams and switch them.
Task 3Apply blur effect to a part of the video displayed

in the main output.

Task 1 is the simplest task that often used in VJing for
applying an effect. Task 2 is the task that most often used
in VJing for switching two videos. Task 3 is a complex task
for creating a new effect for which Improve was developed.

The participants were able to ask questions about operat-
ing ImproV during the tasks. The completion times for the



tasks were measured to compare the operability of ImproV
and AE. The participants performing the tasks were recorded
for later analysis.

Results

In Experiment 1, all participants answered correctly. This
result indicates that the dataflow diagram of ImproV is
understandable for VJs.

Task 1 Task 2 Task 3

ImproV 82.4 135.2 281.0

After Effects 44.4 52.2 330.0

0

50

100

150

200

250

300

350

400

Seconds

Figure 4. Result of Experiment 2

Figure 4 shows the completion time of each task using
the two systems in Experiment 2. We performed an analysis
of variance to examine the difference between ImproV and
AE. There was a significant difference between ImproV and
AE in Task 2 (F = 7.169, p < 0.05), and there were no
significant differences in Tasks 1 and 3. The participants
completed Task 3 slightly faster with ImproV than with AE.
However, it was not significant. These results indicate that
ImproV has near equivalent operability to AE in complex
tasks, but exhibits problems in simple tasks. Therefore, we
analyzed the video we recorded during the tasks and found
that connecting nodes, dragging from output port to input
port, took too much time.

The comments from the participants on the questionnaire
also support the above results. The participants gave many
positive comments regarding understandability, e.g., “It is
intuitive with basic knowledge of video creation” and “The
nodes are easy to understand”. Most of the negative com-
ments mentioned the difficulties in connecting nodes, e.g.,
“I was having trouble connecting when I inserted an effect”
and “I want sliders to be pre-attached to each new node”.
The comments regarding complexity of the dataflow editor
of ImproV were, e.g., “The dataflow becomes too complex
while VJing” and “Managing the two data types is difficult”.

We analyzed these results and decided to unify the data
types and to address the connecting problem.

IV. V IDEO TYPE

From the results of the user study, we unified the data
types into a single type calledVideo, which is a sequence

of images. TheVideo type provides simple yet flexible ways
to specify parameters of effects, still enabling represents a
video as the processing subject of the dataflow.

In Figure 5, the video with triangles in the upper left is
rotated at the center of the frame by using theRotation

node and its brightness is changed by using theBrightness

node. Note that the rotation angle and brightness to be
changed are designated by thegray scale videoinput to the
ValueIn of both theRotation and Brightness nodes.
The resulting video from theRotation and Brightness

nodes is more rotated and darkened where the gray scale
video is brighter, respectively.

Figure 5. Setting parameters withVideo type

The semantics is as follows. Each effect extracts a value
for each pixel of each frame of theVideo-type data and
uses that value as the luminance value on the pixel position.
More concretely, an effect is defined asf in Eq. (1).Outxy
is the pixel color of the resulting image at(x, y), n is the
number of input ports, andVn is the frame ofnth input
port.

Outxy = f(x, y,V1 ,V2 ,V3 , · · · ,Vn) (1)

For example,f of the Rotation node is defined using
Eq. (2).

f(x, y,V1 ,V2 ) = V1RxRy (2)

where (
Rx
Ry

)
=

(
cosV2xy − sinV2xy

sinV2xy cosV2xy

)(
x
y

)
(3)

Giving effect parameters withVideo-type values enables
different values for different positions on the same frame to
be set simultaneously. It also enables animation of parameter
values according to the video that is input as the parameter.

Figure 6. Dataflow of animation example



Figure 7. Example of animation

V. EXAMPLES USING V IDEO TYPE

In this section, we demonstrate three examples using the
Video type for parameter animation, audio, and camera.

A. Animating Parameters

Designating a video effect parameter with a video can
animate that parameter along with the input video’s move-
ment. Figure 7 shows ten frames of the input and output
of the Rotation node shown in Figure 6. The top, middle,
and bottom strips show the image sequence ofVideoIn,
ValueIn, and the output, respectively. In Figure 6, the
rotation angle is designated by the gray scale video.

The resulting image sequence shows that the original
video is modulated by the gray scale video. Although VJs
still have to prepare some gray scale animated videos, those
videos are versatile. Therefore, providing such videos as
libraries is practical.

B. Audio Input

An AudioIn node captures audio signals from a sound
card using PortAudio [11] and outputs a gray scale audio
visualization. A VJ can designate the layout of the audio
visualization by inputtingVideo-type data. AnAudioIn
node captures audio signals from the sound card then
arranges the newer samples to where the pixels of the input
video are brighter. Finally, it outputs the gray scale image
according to the audio level.

For example, anAudioIn node outputs the waveform as
vertical streaks since the horizontal gray scale video is input
to theAudioIn node, as illustrated in Figure 8. Translating
the horizontal color bars’ y-axes according to the vertical
streaks results in visualization of the waveform.

Figure 8. Example of audio visualization

Figure 9 shows a more complex example of audio visu-
alization. By inputting circle gradation, anAudioIn node
arranges the samples from center to outside. The output
image from theAudioIn node results in ring streaks. The
Blur node smoothes the streaks. TheScale node changes
the scale of the video input inVideoIn. In Figure 9, the
Scale node, by inputting the smoothed streaks toValueIn,
works as a ripple-like effect.

Figure 9. Example of complex audio visualization

C. Camera Input

With the Video type, a VJ can use aCamera node to
control parameters. ACamera node captures the video from
a USB camera. It was originally designed to be used to
record an audience or DJs (or other performers). However,
we found that using a captured video as another node’s
input parameter enables a VJ to use a USB camera as an
instrument for controlling parameters.

The bottom left video of Figure 10 was captured using a
USB camera. This video can be used as the parameter of
the Scale node, which enlarges the original video where
the parameter video is dark and shrinks the original video
where the parameter video is bright. In the downer left of
Figure 10, A VJ is rubbing the lens of the USB camera
with his/her thumb. This produces a video similar to the
animation of the gray scale video shown in Figure 6. In this
way, the VJ can interactively control the area that he/she
wants to enlarge by moving his/her thumb.

VI. A DJUSTMENTKNOBS

A VJ can quickly set a parameter and adjust an input
video value with an adjustment knob placed on each input
port. Figure 11 shows what the adjustment knobs look like.



Figure 10. Controlling scale with USB camera

The Rotation node has two input ports, each of which is
represented as double circles. The green fan between the
two circles is the port’s adjustment knob. The central angle
of the fan indicates the value of the adjustment knob. A VJ
can increase or decrease the value by dragging the mouse
from the input port to up or down.

Figure 11. Adjustment knobs

An adjustment knob works differently depending on
whether video input is given or not. In both cases, the
value of the adjustment knob is used as opacity. If a video
input is given to the input port, the port multiplies the value
of its adjustment knob and the alpha channel value of the
input video in each frame. In Figure 5, the rotation angle is
restricted to90◦ by designating the value of the adjustment
knob to 25%.

If no video input is given to the input port, the port
is treated as if a video of white frames is input. In this
case, all pixels on the frame uniformly have the value of its
adjustment knob. Figure 12 shows an example of such input
ports. In this example, theColor node corrects the color of
the input. TheSaturation andBrightness are set around
50%, which means the same saturation and brightness as the
original video. TheHue is set around 25%, which means the
hue is90◦.

Figure 12. Correcting color with adjustment knobs

Adjustment knobs are designed as syntax sugar for the
two idioms that an unconnected adjustment knob works as

a Slider node which is a constant node in ImproV, and
a connected adjustment knob works as a combination of
Slider and Transparency nodes. Before the adjustment
knob is developed, he/she has to create aSlider node
and sometimes aTransparency node, and connect them.
Creation and connection occurs many times when using
nodes that have several input ports as parameters, such as
the Color node. The same combination ofSlider and
Transparency nodes is also used for fading a video, which
is often used in VJing.

To show the effectiveness of adjustment knobs, Figure 13
shows the corresponding dataflow of Figure 12 on an older
version of ImproV. The meanings of these two dataflows are
identical. TheSlider node outputs a gray plane according
to the value indicated by the slider on the node.

Figure 13. Correcting color with sliders in older version of ImproV

Figure 14 is a screenshot of the older version of ImproV.
The transparency of the gray scale video is adjusted by a
combination ofTransparency and Slider nodes before
the gray scale video is input to theRotation node. The
rotation angle is restricted by theSlider node as Figure 5.

Figure 14. Adjusting video with Transparency node in older version of
ImproV

The advantage of adjustment knobs is not only the re-
duction in the number of node creating and connecting
operations, but is also the fluidness of the interaction flow,
i.e., a VJ drags the mouse from an output port to an input
port and then drags the mouse from the input port up or
down.

VII. D ISCUSSION

In this section, we discuss the possibility of applying
features of ImproV to other domains, i.e., audio and music.



It might be able to unify data types of a dataflow visual
language for processing audio. An audio processing dataflow
requires two data types, audio signal and parameter control-
ling signal. Both data types are sequences of linear values.
Therefore, the abstract concept of data unification on a
dataflow visual language can be applied to audio processing.
However, note information in processing a musical score is
difficult to represent by a sequence of linear values. We
can define 0 as note-off and other values as note-on for the
pitches of the values. However, such a definition may not
suite a musician’s intuition.

From the user interface point of view, adjustment knobs
are also efficient for audio processing. Adjustment knobs in
a dataflow visual language system for processing audio can
be used to set linear values and adjust the value input to
the input port. This reduces edge connection frequency and
visual complexity. However, it depends on the characteristics
of the data type. Adjustment knobs will work for many data
types in a dataflow visual language system for any domain.

VIII. R ELATED WORK

There have been several dataflow visual language systems
for supporting live performances. Editing dataflow during
a performance is recognized as an established performance
method in music. Bencina developed the audio processing
system AudioMulch [3], which is based on a similar concept
to that of ImproV in which the performer constructs effects
on the fly. We are aiming at a similar abstraction level to
AudioMulch with our system, in which professionals can
understand and construct the dataflow without programming
knowledge. The dataflow of AudioMulch also handles single
data type, audio signal. However, parameter controlling is
located in the user interface panel outside the dataflow editor.
The Video type of our system can control parameters and
be processed in the dataflow. It is also clear which knob
corresponds to which parameter.

Dataflow visual language systems have been developed
for VJing. Müeller et al. developed Soundium [5], a dataflow
visual language system for VJing and explain the VJing
method using Soundium [6]. Soundium has large function
libraries and several data types which make dataflow too
complicated. Parameter controlling is located outside the
dataflow editor, as in AudioMulch.

ReacTable [4] by Jorda et al. uses tangible objects on
a touch panel to construct an audio synthesizer’s structure
on the fly. VPlay [7] by Taylor et al. is a dataflow visual
language system designed for multi-touch panels. Both sys-
tems have similar dataflow editing methods that bringing
two nodes close together connects the nodes, and turning
a node changes a parameter of the node. However, these
editing methods sometimes result in an unintended dataflow
structure. Moving a node can connect or disconnect edges.

Several systems, such as SPATIAL POEM [8], Rhyth-
mism [9], and video-organ [10] for controlling the visual

attributes in VJing have been developed. While our study
mainly focused on STEP 1 of Lew’s analysis, these studies
addressed STEP 2 and can be used together with our system.
Moreover, theVideo type of our system enables VJs to use
camera input to control parameters on the fly. This makes a
camera a useful new instrument, which shows the flexibility
of our system.

IX. CONCLUSIONS

ImproV is a dataflow visual language for VJing. We have
conducted a user study for the first prototype of ImproV
and found that two data types of dataflow confuse VJs and
that connecting nodes is time consuming. To address these
problems, we unified the data types into a single type called
Video and developed adjustment knobs. This unification
simplifies dataflow and makes various applications such as
parameter animation, audio visualizing, and using cameras
as controllers possible. The adjustment knobs enable quick
interaction by reducing the frequency of constant node
creation and connection. Dataflow is also easy to understand
due to the reduction in visual complexity.

REFERENCES

[1] M. Lew, “Live Cinema: designing an instrument for cinema
editing as a live performance,” inNIME ’04, pp. 144–149.

[2] A. Kobayashi, B. Shizuki, and J. Tanaka, “ImproV: A system
for improvisational construction of video processing flow,” in
HCI International 2009 Part IV, pp. 534–542.

[3] R. Bencina, “Oasis Rose the composition - real-time DSP with
AudioMulch,” in Proceedings of the Australasian Computer
Music Conference, 1998, pp. 85–92.

[4] S. Jord̀a, G. Geiger, M. Alonso, and M. Kaltenbrunner, “The
reacTable: exploring the synergy between live music perfor-
mance and tabletop tangible interfaces,” inTEI ’07, pp. 139–
146.

[5] P. Müeller, S. M. Arisona, S. Schubiger-Banz, and M. Specht,
“Interactive media and design editing for live visuals applica-
tions,” in GRAPP ’06, pp. 232–242.

[6] P. Müeller, “Live visuals tutorial: part III,” inSIGGRAPH ’07
courses, pp. 127–151.

[7] S. Taylor, S. Izadi, D. Kirk, R. Harper, and A. G. Mendoza,
“Turning the tables: an interactive surface for VJing,” inCHI
’09, pp. 1251–1254.

[8] J. Choi and S. H. Hong, “SPATIAL POEM: A new type of
experimental visual interaction in 3D virtual environment,” in
APCHI ’08, pp. 167–174.

[9] S. D. Tokuhisa, Y. Iwata, and M. Inakage, “Rhythmism: a VJ
performance system with maracas based devices,” inACE ’07,
pp. 204–207.

[10] B. Bongers and Y. Harris, “A structured instrument design
approach: the Video-Organ,” inNIME ’02, pp. 1–6.

[11] R. Bencina and P. Burk, “PortAudio - an open source cross
platform audio API,” inICMC ’01, pp. 263–266.


