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Figure 1: CanalSense. a) A user can use this system simply by wearing its earphone-type barometers in the same manner as
wearing canal-type earphones. b) Earphone-type barometers of CanalSense, each of which consists of a canal-type earphone
and a small embedded barometer and a transmission module. c) Two examples of face-related movements and the observed air
pressure values inside the ear canals during the movements.

ABSTRACT
We present a jaw, face, or head movement (face-related move-
ment) recognition system called CanalSense. It recognizes
face-related movements using barometers embedded in ear-
phones. We find that face-related movements change air pres-
sure inside the ear canals, which shows characteristic changes
depending on the type and degree of the movement. We also
find that such characteristic changes can be used to recog-
nize face-related movements. We conduct an experiment to
measure the accuracy of recognition. As a result, random for-
est shows per-user recognition accuracies of 87.6% for eleven
face-related movements and 87.5% for four Open Mouth lev-
els.
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INTRODUCTION
Among wearable listening devices available on the market,
earphones and headphones, which are used to listen to sounds
anytime and anywhere, are the most popular wearable device
worn around the head. Between the two of them, earphones
are used the most in public. A typical scenario in which ear-
phones are used is listening to music, where the user connects
a pair of earphones to a smartphone. However, to do this, the
user usually needs to use at least one hand and look at the
smartphone’s screen to take the smartphone out of the pocket
and control its music player.

To address this issue, some commercial earphones have
adopted sensors to allow users to operate the connected
smartphone [9, 15]. For example such earphones, they have
an accelerometer, a photo-reflector, and a touch-sensor for
detecting a head/touch gestures (e.g., a nod for confirming a
command, a shake of the head for cancelling a command, and
a touch of the earphone for starting/stopping music). How-
ever, the number of head gestures is narrowly limited, and
touching is not hands-free.

In this paper, we present CanalSense, a system for recogniz-
ing a jaw, face, or head movement (face-related movement).
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The system concept emerged from our finding that air pres-
sure inside the ear canals reflects characteristic changes ca-
sually dependent upon the type and degree of face-related
movement. These changes can be measured using a barom-
eter embedded in the earphone (earphone-type barometer) or
by two earphone-type barometers in both ears. Therefore,
we estimate face-related movements by employing machine-
learning or pattern-matching to characterize the motions.

CanalSense is an easy-to-use outer ear interface (OEI) sys-
tem. A user can wear earphone-type barometers in the
same manner as wearing canal-type earphones, which are
manufactured using commercially available earphones and
eartips. Thus, CanalSense is a wearable system that can be
used in everyday situations, like conventional wearable glass-
shaped [7] and headphone-shaped eye trackers [23].

Through our work, we provide the following findings and
contributions:

• We find that movements of the jaw, face, or head can be
recognized based on changes in the air pressure inside the
ear canals, measured using barometers.

• We present an implementation method to recognize face-
related movements. We also show an implementation
called CanalSense based on the proposed method.

• Our experiment showed that CanalSense achieves per-user
recognition accuracies of 87.6% for eleven face-related
movements, and 87.5% for four Open Mouth levels using
random forest (RF).

RELATED WORK
CanalSense is a system that recognizes a user’s face-related
movements based on changes in the air pressure inside the
ear canal. This section reviews prior work on OEIs, face-
related movement recognition and recognition methods using
barometers.

Outer Ear Interface
Several OEIs that recognize gestures and/or movements by
attaching various sensors, earphones, and headphones to the
outer ears have been proposed. For example, Manabe and
Fukumoto [24] presented a technique called Headphone Taps
that recognizes taps to headphones using built-in speakers
with no additional hardware. EarPut [20] is an OEI that uses
augmented earphones with an attached touch sensor array,
which recognizes touch gestures to the user’s ear. Univer-
sal Earphones [26] use a proximity sensor to detect which ear
(i.e., left or right) an earphone is worn on. Septimu2 [13] per-
forms heart-rate monitoring, fine grained posture detection,
and external sound source localization and classification by
embedding a 3-axis accelerometer, a gyroscope, IR sensors,
and two microphones into the earphones. Heartphones [30]
provide non-intrusive continuous heart rate monitoring by in-
tegrating photoreflectors into earphones. Tayama et al. [35]
developed a biometric sensor with a pressure transducer.
When the ear is sealed, it detects the user’s heartbeat by mon-
itoring the air pressure inside the ear canal. SweepSense [19]
uses the earphone’s built-in speakers and microphones to rec-
ognize how a user wears them, based on the reflected sound

in the ear canals. Manabe et al. [25] implemented earphones
that recognizes eye movements by capturing an electrooculo-
gram; they utilized the recognized eye movements as gesture
inputs. CanalSense is also an OEI and can recognize face-
related movements by using earphone-type barometers.

Similar to CanalSense, some OEIs that recognize face-
related, mouth, and/or tongue movements have been pro-
posed. For example, Bedri et al. [3] developed an OEI with
three proximity sensors, one of which measures the degree
of deformation in an ear canal. This OEI recognizes heart
rate, tongue activities, jaw motion, and eye blinking. More-
over, Bedri et al. [5] attempted to recognize eating activities
by using both the OEI and a 3D gyroscope placed on a hat.
Bedri et al. [4] recognizes silent speech using a magnet at-
tached to the user’s tongue, magnetometers mounted near the
cheek to track the 3D position of the magnet, and a pair of
proximity sensors mounted near the user’s ear canals. InEar
BioFeedController [27] recognizes head nodding and shak-
ing, eye winking, and ear wiggling by attaching a gyroscope
and electroencephalography (EEG) sensors to each earphone.
By contrast, CanalSense recognizes face-related movements
by using only barometers.

Face-Related Movement Recognition
There has been some research, other than the above, that at-
tempted to recognize face-related movements for achieving
universal access to computer systems.

Mouth and/or Tongue
MouthType [22] is one example of research on mouth and/or
tongue movement recognition. It uses hand and mouth move-
ments to register text-entry, and a camera to recognize the
shape, area, and aspect ratio of an Open Mouth. Bitey [2]
recognizes tooth clicking sounds using one bone-conduction
microphone just above an ear, and utilizes the results for eyes-
free input. The system by Cheng et al. [8] recognizes tongue
movements by attaching a textile-type pressure sensor array
to the user’s cheek. Tongue-in-Cheek [11] recognizes face-
related gestures caused by tongue movements by using three
X-band Doppler radars placed in front of the face. In addi-
tion, there is research on facial expression recognition with a
head mounted display with photo-reflective sensors mounted
on its interior [34].

Jaw
Some methods to recognize jaw movements have been pro-
posed. For example, Kato [17] proposed a method that rec-
ognizes mastication by measuring changes in the shape of a
tube inserted into the ear canal, using a pressure sensor. Ne-
mirovski [29] proposed a method for recognizing movements
by observing otoacoustic emissions caused by a user’s move-
ments. Wakamoto [36] measured chewing counts by insert-
ing a pressure sensor into the ear canal. Aoki and Mine [1]
proposed a mastication count system that recognizes biting
sounds using a microphone. Sakai [33] developed a mastica-
tion sensor that can be inserted by the user into an ear canal,
and which includes an air chamber that changes its shape dur-
ing mastication.



Head
Recognition of head movement has been extensively re-
searched, and their usability in various kinds of fundamen-
tal tasks in human-computer interaction is already being ex-
plored. For example, LoPresti et al. [21] detected neck move-
ments with an ultrasonic-based approach, and used the re-
sults for icon selection and tracking tasks. Crossan et al. [10]
proposed an input method for a smartphone where the user
can move a cursor by tilting the head, which is measured
by a 3-axis accelerometer and a magnetometer mounted on
a cap. Rigas and Komogortsev [32] explored eye movement
biometrics and showed these possible directions for the fu-
ture research on eye movement-based recognition. Jacob et
al. [16] mounted a motion tracker on the user’s head to inves-
tigate how head movements can efficiently serve as a method
to change the viewpoint in 3D applications.

In contrast to these works, CanalSense recognizes face-
related movements, such as jaw, mouth, or head movements
using earphones with embedded barometers.

Recognition Method using Barometers
Barometers are used for context-awareness and movement
recognition in various research areas. For example, Wu et
al. [37] recognized whether doors were open or closed using
a built-in barometer in a smartphone. Ye et al. [38] proposed
a floor localization system using a barometer, which can es-
timate the floor level in a multi-floor building by measuring
changes in elevation. Emoballoon [28] recognizes touch ges-
ture inputs on a balloon containing a barometer and micro-
phone. Hyuga et al. [14] proposed a localization method that
estimates the user’s motion state and location in the subway
using only a barometer built-into a smartphone.

CanalSense uses barometers to recognize face-related move-
ments.

SENSING PRINCIPLE OF CANALSENSE
A portion of the musculoskeletal system used to move the
jaw, face, and head related to the ears is illustrated in Fig-
ure 2. When a user performs a face-related movement, the
musculoskeletal system changes, affecting the shape of the
ear canals [6].

Specifically, when the jaw (i.e., mandible) is moved, the
shape of the left ear canal changes depending on the po-
sitional relationship between the ear canal and the left
mandibular condyle [18], which is the protrusion located at
the left end of the mandible (the same is true on the right
side). When the face or head is moved, the sternocleidomas-
toid muscle, which is large and close to the ear canal (see Fig-
ure 2c) and connects the back of the ear to the clavicle, either
relaxes or contracts. This relaxation/contraction respectively
expands/compresses the ear canal, changing its shape.

When the shape changes due to those factors, the volume of
the space within the ear canal also changes. Therefore, when
the ear canal is sealed using a material object such as an ear-
phone, the changing volume inside the ear canal causes the
internal air pressure to change.

Mandible

Mandibular 
Condyle

Ear Canal

a b c

Sternocleidomastoid
Muscle

Figure 2: Principle of air pressure changes.

The air pressure inside the ear canal shows characteristic
changes depending on the type and the degree of movement.
To illustrate this, examples of face-related movements and ex-
amples of waveforms of the air pressure of both canals cor-
responding to the movements are shown in Figure 3. As this
figure shows, the waveforms differ from each one other. For
example, in Open Mouth, both the left and right air pressure
values ascend, while in Close Mouth, both values descend.
Interestingly, some symmetrical movements show symmetri-
cal changes (e.g., Slide Jaw Left and Slide Jaw Right) while
other symmetrical movements show asymmetrical changes
(e.g., Face Left and Face Right, Tilt Head Left and Tilt Head
Right). This is due to the difference between the left and right
muscles, and individual idiosyncrasies in the movements of
the face and head. Note that the degrees of change with Slide
Jaw Left or Slide Jaw Right are smaller than Open Mouth and
Close Mouth; this is consistent with [31].

By using a barometer inserted into the ear canal, changes in
the air pressure can be measured. Therefore, employing ma-
chine learning or pattern matching to characterize changes in
the air pressure enables the estimation of the movements.

IMPLEMENTATION
Our implementation consists of hardware, including
earphone-type barometers, and software that employs an al-
gorithm for recognizing the face-related movements from the
changes in barometer values. Figure 4 shows the overview of
this implementation.

Hardware
We implemented earphone-type barometers to measure the
air pressure changes inside the ear canals (Figure 1a). We
embedded a tiny barometer (Bosch BMP280 in our current
implementation) in a commercially available canal-type ear-
phone (Panasonic RP–HJE260). Moreover, because it is im-
portant to improve the airtightness of the ear canals to mea-
sure the air pressure precisely, we sealed the vent holes of
the canal-type earphones with hot glue. Furthermore, the
user was made to choose suitably-fitting eartips with no vent
holes, which were used in combination with the canal-type
earphones to keep the ear canal airtight. In our experiment,
described later, we used foam eartips, which are earphone tips
whose surfaces are made of soft, thick rubber. We asked the
participants to squeeze the foam eartips enough before insert-
ing them into the ear canals so as to make them fit and expand
into the ear canals tightly.
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Figure 3: Face-related movements and waveforms of the air
pressure (hPa) of both ear canals corresponding to the move-
ments.
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Figure 4: Overview of the implementation.

We also built a mobile transmission module (Figure 1b) con-
sisting of a microcomputer (Arduino Pro Mini) and a Blue-
tooth module (SparkFun BlueSMiRF Silver) to wirelessly
transmit the barometers’ values to the computer that hosts
our software. In our current implementation, the transmission
module samples the air pressure at 32 Hz in each ear (64 val-
ues per second in total) using the barometers, and transmits
the values to the computer. This module also has a recharge-
able battery (we used a lithium polymer battery, DTP 502535,
the battery drove this module for four hours in our experi-
ment).

Software
Our recognition algorithm is composed of two processes. The
first extracts the waveforms of the barometer values during a
face-related movement. The second classifies the movements.

Extraction
To extract waveforms of the barometer values during a face-
related movement, the recognition algorithm intake barome-
ter values and tries to find a peak or valley with a gradient
steeper than a threshold. If such a peak or valley is found, the
barometer values at and around the respective peak or valley
are saved as a waveform of a face-related movement.

To do this, the algorithm collects 32 barometer values gk (k
= 0, ..., 31; 31 is the most recent) per ear in every frame;
these values represent the air pressure changes in one second.
Then, the algorithm divides the 32 values into four parts (first
part: 0–7; second part: 8–15; third part: 16–23; fourth part:
24–31) and uses the mean gradient (Equation 1) of the second
and third parts to find the waveform of a steep peak or a valley.

F(i, j) =
g j −gi

j− i
(1)

Equation 1 calculates the gradient between gi and g j. The
algorithm uses this equation to calculate the gradient of the
second part F(8,15) and the third part F(16,23). After this
calculation, if the second and the third parts in either ear sat-
isfy Equations 2 or 3, the algorithm saves the 32 barometer
values of both ears as the waveform of a movement:

F(8,15)> α ∧F(16,23)<−α (2)



F(8,15)<−α ∧F(16,23)> α (3)

Moreover, because these equations fail to extract fast move-
ments whose barometer values oscillate greatly within 16
frames, the algorithm also saves the barometer values that sat-
isfy Equation 4:

max(gk)−min(gk)> 4α (4)

where max(gk) and min(gk) are the maximum and minimum
values of gk, respectively, and the range of k is 8 < k < 23.

Note that the constant α in these equations depends on the
airtightness inside the ear canal and the volume within the
earphones. To detect small face-related movements, α should
be set to a small value. In our current implementation, we use
a constant of 0.02 hPa as α , which we derived empirically.

Classification
We used RF for classifying the saved waveforms to recog-
nize the face-related movements. This process first extracts
feature vectors from each of the saved waveforms. A fea-
ture vector consists of the following 90 values: the differ-
ence between each barometer value and its previous one (31
values from each of the left and right barometers, 62 values
in total); the amplitude spectrum obtained by applying a fast
Fourier transform algorithm to the differences between the
left and right barometer values (16 values); the standard devi-
ation (one value from each, two values in total), the maximum
to minimum (one value from each, two values in total); the
difference between the last and first values (one value from
each, two values in total); the difference between the maxi-
mum and first value (one value from each, two values in to-
tal); the difference between the minimum and first value (one
value from each, two values in total); and the number of val-
ues that are α × 4 hPa or more distant from the mean (one
value from each, two values in total). Because atmospheric
pressure changes from day to day, and time to time, we de-
signed these features without using the raw barometer values
directly. In the evaluation of using one ear, we used a feature
vector consisting of 37 values: we removed the amplitude
spectrum from 90 values and used the 37 values for evaluat-
ing each of the left and right barometers.

EVALUATION
We conducted an experiment to measure the accuracy of
movement recognition.

Participants
We recruited 12 participants (P1–P12, eight males and four
females) ranging in age from 21 to 23 years old (SD = 0.7);
we collected participants of similar age, whose growth of the
jaw and muscle would be in the same degree to control the ex-
perimental condition. All were full-time undergraduate stu-
dents at the local institution. All had used canal-type ear-
phones; eight used them usually (P1, P3, P5, and P7–P11).
Two had suffered from a temporomandibular disorder, but
both had already been cured (P6 and P11).

Experimental Environment
The experiment was held in a room in which all doors and
windows were closed. The room’s atmospheric pressure
ranged from 996.6 hPa to 1013.3 hPa (M = 1002.5 hPa); its
temperature ranged from 21.8 ◦C to 24.6 ◦C (M = 23.6 ◦C);
its humidity ranged from 20% to 31% (M = 23%).

Procedure
The experiment was held under a sitting condition. Before
performing the tasks, we asked the participants to complete
a consent form and a questionnaire assessing demograph-
ics information and their experience with earphones. We
also instructed the participants to prepare themselves to wear
the earphone-type barometers, because some participants had
never used the foam eartips.

We then asked the participants to perform Task A and then
Task B. In each task, we first explained each of the face-
related movements of the task and asked the participants to
perform them. In a trial, one instruction was displayed in a
random order in both tasks. Each instruction was the name
of a face-related movement (e.g., Face Left) along with its
Japanese translation, because the native language of all par-
ticipants was Japanese. For one trial, we collected barometer
values for three seconds (96 values from each barometer, 192
values in total). We asked the participants to take a break af-
ter every round and to re-wear (i.e., remove then reattach) the
earphones after each round.

After the participants completed Tasks A and B, we asked
them to answer the questionnaire regarding the ease of the
movements. The experiment took approximately 70 minutes
per participant. All participants were paid JPY 820 (approxi-
mately USD 7.40) for their time.

Task A
The purpose of Task A was to record the barometer values
of multiple kinds of face-related movements. We asked the
participants to perform each movement illustrated in Figure 3
as quickly and widely as possible. Because it was necessary
to keep the mouth open before the Close Mouth movement,
we asked participants expressly to do so to allow us to record
only the barometer values of Close Mouth.

As a trial, the participants performed one of the eleven move-
ments. In one round, they performed each of the eleven move-
ments. In this task, each participant performed 12 rounds.
In total, we collected the barometer values of 1584 tri-
als (12 participants × 11 kinds of face-related movements ×
12 rounds).

Task B
The purpose of Task B was to record the barometer values
of multiple levels of Open Mouth. Specifically, we asked the
participants to perform four levels of Open Mouth (i.e., Keep
Mouth Closed, Open Mouth Slight, Open Mouth, and Open
Mouth Wide). Because there are individual differences in the
range of jaw movement, the distinction of the four levels was
left to the participants’ interpretation.

As a trial, the participants performed one of the four lev-
els of Open Mouth. In one round, they performed each of



L R L+R L R L+R
P1 69.7 78.8 90.2 72.0 73.5 88.6
P2 64.4 40.9 80.3 74.2 37.9 81.8
P3 66.7 51.5 87.9 80.3 60.6 89.4
P4 78.0 83.3 87.9 75.6 75.6 93.2
P5 78.8 87.1 92.4 88.6 84.1 99.2
P6 77.3 65.9 87.1 81.8 65.9 87.1
P7 65.2 62.1 81.1 77.3 62.9 90.9
P8 69.7 73.5 91.7 74.2 77.2 90.9
P9 63.6 58.3 80.3 75.0 75.0 87.9
P10 73.5 75.8 97.7 78.0 80.3 98.5
P11 73.5 73.5 88.6 83.3 77.2 90.2
P12 69.7 65.2 86.4 75.0 74.2 90.9
Mean 70.8 68.0 87.6 77.9 70.4 90.7
SD 5.4 13.4 5.2 4.8 12.4 4.7

RandomForest DTW+kNNa
L R L+R L R L+R

P1 77.1 72.9 87.5 79.2 85.4 81.3
P2 93.8 66.7 91.7 95.8 54.2 93.6
P3 95.8 85.4 97.9 91.7 77.1 91.7
P4 93.8 87.5 91.7 93.8 83.3 89.6
P5 79.2 91.7 87.5 75.0 81.3 79.2
P6 83.3 77.1 91.7 79.2 77.1 77.1
P7 72.9 89.6 87.5 79.2 89.6 93.8
P8 62.5 79.2 79.2 68.3 72.9 75.0
P9 75.0 72.9 79.2 72.9 72.9 83.3
P10 75.0 77.1 79.2 91.7 83.3 93.8
P11 85.4 85.4 87.5 79.2 83.3 83.3
P12 62.5 91.7 89.6 75.0 91.7 95.8
Mean 79.7 81.4 87.5 81.8 79.3 86.5
SD 11.2 8.3 5.8 9.1 9.9 7.4

RandomForest DTW+kNNb

Table 1: Accuracies of movement recognition. L uses only the left-ear values; R uses only the right-ear values; L+R uses both
the left- and right-ear values. a) Eleven face-related movements. b) Four Open Mouth levels.

four levels of Open Mouth. In this task, a participant per-
formed 12 rounds. In total, we collected the barometer values
of 576 trials (12 participants × four levels of Open Mouth ×
12 rounds).

RESULTS
We measured the recognition accuracy of the eleven face-
related movements and the four levels of Open Mouth using
the saved waveforms in Task A and Task B, respectively (Ta-
ble 1.) We used a leave-one-out cross-validation to measure
the accuracy. In this measurement, we mainly used RF pro-
vided by Weka [12] with its default parameters for classifi-
cation. In addition, we tested the combination of Dynamic
Time Warping and k-nearest neighbor (DTW+kNN) with k =
1, since each face-related movement shows a different shape
as shown in Figure 3, which we thought DTW cloud clas-
sify well. With DTW+kNN, we used the raw data of the
saved waveforms (unlike RF). However, because the results
of DTW+kNN were similar to those of RF and DTW is com-
putationally intensive and thus real-time classification is dif-
ficult in a casual computational platform, we only discuss RF
hereafter.

Through all the evaluations, there were no significant differ-
ences between participants who had suffered from a temporo-
mandibular disorder and the others.

Recognizing Eleven Face-Related Movements
In order to measure the accuracy of recognition of eleven
face-related movements, we built and executed per-user clas-
sifiers using the data from Task A. We trained a per-user
classifier with only that user’s data and performed cross-
validation using the same user’s data. Table 1a shows the
accuracy for each participant. The confusion matrix of this
classification is shown in Table 2.

The overall accuracy was 87.6% (SD = 5.2). There were
significant differences between using both barometers (i.e.,
L+R) and using a single barometer (i.e., L or R) with a
Kruskall-Wallis test (L and L+R: p = 0.00 < 0.05, R and L+R:

p = 0.00 < 0.05). This suggests that there is an advantage
of using both barometers for recognizing eleven face-related
movements.

In Table 1a, the accuracy of P2’s Right was fairly low com-
pared to the others. In the post hoc questionnaire, P2 wrote
that he thought his ear canals were so small that the earphones
could not fit his ears well during the experiment. On the other
hand, the accuracies of the other participants who wrote the
same comment were not as low as those of P2. Furthermore,
unpaired two-tailed t-tests showed no significant difference
between the group using earphones usually and the others,
which includes P2 (L: p = 0.52, R: p = 0.47, and L+R: p =
0.32). From these results, the low accuracy of P2’s Right
would be an issue peculiar to P2’s right ear canal, which
should be further investigated.

In addition, since the accuracy largely varies between move-
ments, we performed a Kruskall-Wallis test. The test showed
that there was a significant effect of movements on accuracy
(p = 0.02 < 0.05); a post-hoc Tukey test showed that the accu-
racy of Keep Mouth Closed was higher than Face Right (p =
0.00 < 0.05, Face Left (p = 0.00 < 0.05), and Tilt Head Right
(p = 0.04 < 0.05).

Recognizing Four Levels of Open Mouth
In order to measure the accuracy in recognizing the four lev-
els of Open Mouth, we built and executed per-user classifiers
using the data of Task B. Table 1b shows the accuracy for
each participant. The confusion matrix of this classification
is shown in Table 3.

The overall accuracy was 87.5% (SD = 5.8). In contrast to
recognizing the eleven face-related movements, there were no
significant differences between using both barometers (i.e.,
L+R) and using a single barometer (i.e., L or R). This sug-
gests that a single barometer would be enough to recognize
the four levels of Open Mouth.

In this result, as the confusion matrix shows, the most con-
fused pair of levels was Open Mouth and Open Mouth Slight.



OM CM SJL SJR KMC FL FR FU FD THL THR
Open Mouth (OM) 93.1 0.7 0.0 0.7 0.0 0.7 0.7 2.1 2.1 0.0 0.0
Close Mouth (CM) 0.0 89.6 0.0 0.7 0.0 0.7 1.4 2.8 3.5 1.4 0.0
Slide Jaw Left (SJL) 0.0 0.7 88.2 2.1 0.7 0.7 0.7 0.0 0.0 4.2 2.8
Slide Jaw Right (SJR) 2.1 0.7 0.0 91.0 0.7 0.7 0.0 0.7 1.4 0.7 2.1
Keep Mouth Closed (KMC) 0.0 0.0 0.0 0.0 99.3 0.7 0.0 0.0 0.0 0.0 0.0
Face Left (FL) 0.0 0.7 1.4 0.7 2.1 86.8 0.7 2.8 0.0 4.2 0.7
Face Right (FR) 1.4 0.0 1.4 0.7 0.7 3.5 79.9 5.6 0.0 1.4 5.6
Face Up (FU) 2.1 2.8 0.0 0.7 0.7 2.8 5.6 83.3 0.0 0.0 2.1
Face Down (FD) 1.4 0.7 0.7 0.7 0.0 2.8 1.4 0.0 87.5 1.4 3.5
Tilt Head Left (THL) 1.4 0.0 1.4 2.8 0.0 2.8 1.4 2.1 0.7 85.4 2.1
Tilt Head Right (THR) 0.0 0.7 1.4 1.4 0.7 1.4 3.5 3.5 2.1 1.4 84.0

Predicted Movements
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Table 2: Confusion matrix for recognizing the eleven face-related movements shown in Figure 3 using RF.
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Figure 5: Accuracies in each cross-validation fold using RF.

This would be because these need to adjust the degree of
openness of the mouth more finely than Open Mouth Wide,
which only needs to open the mouth as widely as possible;
therefore, some participants could not keep the degree the
same in all rounds when performing them. In addition, 11.8%
of Open Mouth Slight was mis-recognized as Keep Mouth
Closed. We observed some participants opened their mouth
by only sticking our her/his upper and lower lips forward in
Open Mouth Slight, which is similar to the movement of kiss.
In this case, the bones and/or muscles were not moved and
thus Open Mouth Slight was mis-recognized as Keep Mouth
Closed.

In addition, we investigated the relation between the amount
of data and the accuracies. To do so, two-, three-, four-, six-,
and twelve-fold cross-validations were performed as shown
in Figure 5. For the eleven movements, the accuracies in
the two-, three-, four-, six-, and twelve-fold cross-validations
were 82.9%, 85.0%, 86.3%, 86.3%, and 87.6%, respectively.
For the four Open Mouth levels, the accuracies in the two-
, three-, four-, six-, and twelve-fold cross-validations were
82.5%, 83.9%, 85.1%, 87.0%, and 87.5%, respectively.

EXAMPLE APPLICATIONS
We developed two example applications. One is a hands-free
and eyes-free music player. The other is a hands-free content

OMW OM OMS KMC
Open Mouth Wide (OMW) 91.7 6.3 2.1 0.0
Open Mouth (OM) 5.6 81.3 13.2 0.0
Open Mouth Slight (OMS) 0.7 8.3 79.2 11.8
Keep Mouth Closed (KMC) 0.0 0.0 2.1 97.9Ac

tu
al

 L
ev

el
s

Predicted Levels

Table 3: Confusion matrix for recognizing four levels of Open
Mouth using RF.

reader application that the user can use it with dirty hands,
such as when cooking.

Hands-Free and Eyes-Free Music Player
The user can use this music player even when her/his hands
are occupied, such as when carrying bags in both hands. The
face-related movements allow the user to perform several ac-
tions, such as play/pause (Open Mouth and Close Mouth in-
stantly), and skip to the previous or next song (Jaw Slide Left
or Jaw Slide Right) in a hands-free and eyes-free manner.

Hands-Free Content Reader
This content reader is used when the user cannot use her/his
hands for touch operations (e.g., the hands are dirty, occupied
such as when cooking, injured, or disabled). By using the
Slide Jaw Left/Right movements, the user can flip pages back
or forward. Similar to these operations, Tilt Head Left/Right
show the previous or next section.

DISCUSSION AND LIMITATIONS

Low Accuracy of Face Right
While there were no significant differences between Face
Right and the other movements except for Keep Mouth
Closed, Face Right tends to exhibit low accuracy. Specifi-
cally, as shown in Table 1, Face Right was confused with Tilt
Head Right and Face Up. The confusion with Tilt Head Right
would be because it involves similar muscle movements to
Face Right since both are movements in the right direction
(this also appears in Face Left and Tilt Head Left). By con-
trast, the confusion with Face Up would be because it is a



movement which involves subtle air pressure changes in the
ear canals as shown in Figure 3 and thus tends to be confused
with various movements including Face Right.

Influence by Various Factors
Although the results of the experiment shows that CanalSense
can recognize face-related movements in high accuracies, we
conducted the experiment only in a controlled lab environ-
ment. Therefore, in order to evaluate whether CanalSense
actually works, it is necessary to examine various factors that
could influence the accuracy.

Physical Condition
Changes in physical condition would affect the recognition
because they will cause air pressure changes inside the ear
canals or make the air pressure changes different from usual
without the user’s intention. Examples of such changes in-
clude having a cold or a stuffy nose, and changes in the body
temperature (e.g., by drinking or performing intense exer-
cise). Therefore, further experiments are necessary to inves-
tigate the effect of physical conditions (e.g., experiments to
examine whether inserting earplugs will affect the accuracy
or not).

User’s Posture/Movement/Action
While our experiment was held under the sitting condition,
the user’s posture would make the air pressure changes differ-
ent. Moreover, user’s movements/actions also cause air pres-
sure changes inside the ear canals. Especially, movements us-
ing the whole body, such as walking, running, biking, or rid-
ing, do cause air pressure changes inside the ear canals. For
example, we observed that walking generates waveforms sim-
ilar to Face Up and Face Down, since the user’s head moves
up and down while walking. Actions around the face, such as
talking, relieving ear pressure, and swallowing, would cause
erroneous detection, since the bones and muscles around the
mouth move by such actions. In addition, we observed casual
small facial expression changes such as wink or nose twitch-
ing have no influences on waveforms while large or strong
facial expressions changes such as bursting into laughter or
squeezing the eyes tightly do have influences.

In order to reduce erroneous detection, we will collect data
during such user’s movements/actions under various postures
conditions, including standing and lying, to improve our sys-
tem.

Environmental Factors
Some environments, such as on an elevator, aboard an air-
plane, and in bad weather, would affect the air pressure inside
the ear canals. In our implementation, we did not use raw
barometer values considering atmospheric pressure changes
from day to day, but the short-time pressure changes were out
of consideration. We will verify the barometer value changes
in these environments and revise our implementation to ac-
commodate the factors.

Sound Factors
The influence on air pressure by the sound played by the ear-
phones should be considered. Because sound vibrates the air
inside the ear canals, there is a possibility that the air pressure

will be changed by the sound. As a pilot study to evaluate the
influences, we conducted a small experiment to compare the
accuracy in recognizing seven face-related movements (i.e.,
Open Mouth, Close Mouth, Slide Jaw Left, Slide Jaw Right,
Keep Mouth Closed, Open to Close Mouth, and Read Sen-
tences). We recruited six participants (four males and two
females) ranging in age from 20–23. We compared two con-
ditions: music and no-music. In the music condition, Sym-
phony No. 5 by Ludwig van Beethoven was played. The
RF results showed no significant difference between the two
conditions (using a paired t-test; music condition: accuracy
89.9%; no-music condition: accuracy 87.7%; p=0.38>0.05).
In future, we plan to conduct experiments to verify the influ-
ences of other types of sound.

Airtightness
CanalSense requires airtightness inside the ear canals. There-
fore, for a user who dislikes to seal the ears, our system is dif-
ficult to use. The user whose ear canals are too small or large
would not be able to use CanalSense because of the loss of
airtightness, although the user can try various sizes of eartips
or make personal fitted earphones/eartips to use CanalSense.

In addition, placement changes of the earphones would af-
fect the airtightness. In the experiment, participants re-wore
(i.e., removed and reattached) the earphones after each round.
Therefore, our system would be robust to re-attachment.
However, it is necessary to examine the effect of the place-
ment changes due to long-time uses (e.g., four hours) and in-
serted conditions (deep or shallow).

Comfort
We used the commercial eartips that were carefully designed
for comfort. Although we used only one size of eartips in
the experiments for unifying the experimental environment,
a user should use eartips that match the user’s ear size. We
obtained two comments about comfort. P2, who wrote his
ear canals were small in his demographic information, com-
mented “Smaller eartips would be better.” This problem pre-
vented the eartips from being inserted well into his ear canals,
and thus the airtightness was low, which reduced the recog-
nition rate. By contrast, P10, who wrote nothing about his
ear canals, commented “The earphones were too tight.” This
would mean that the airtightness of P10 was kept high, result-
ing in a high recognition rate. However, comfort in long-time
use should be explored as future work.

Verification of Individual Difference
There is a possibility that the recognition rate is influenced
by the age of the participant. Therefore, further experiments
with other age-groups are needed. In particular, experiments
with subjects aged 20 years or younger is required because
one’s mandibular condyle grows until age 20 [18]. Moreover,
to better understand the feasibility of CanalSense, we plan to
conduct experiments with participants with various charac-
teristics, such as the ones with temporomandibular joint de-
rangement.



FUTURE WORK
The face-related movements shown in Figure 3 can be com-
bined into a compound movement (e.g., performing Open
Mouth and Tilt Head Right simultaneously). In our exper-
iment, we did not evaluate such combinations. To explore
this, we plan to observe the air pressure changes during com-
pound movements and will attempt to recognize the com-
pound movements in the future experiments.

In our implementation, user calibration for specific contexts
was not carried out. However, to remedy effects of the user’s
condition (e.g., having a cold or not having a cold), we can
use calibration by training the model using the data under
both conditions. Similarly, by sensing the environment (e.g.,
using an elevator or boarding an airplane), it would be cer-
tainly possible to improve accuracy by canceling the linear
increasing/decreasing components in the barometer values.

The experiments in this study were carried out in a controlled
environment. It is necessary to verify the environmental fac-
tors (e.g., using an elevator, boarding an airplane, and en-
during bad weather) in subsequent experiments. In addition,
we must conduct experiments with participants of diverse de-
mographics (e.g., wider age-ranges or those with temporo-
mandibular disorder), because the experiments we conducted
targeted participants who were similar in age, and whose jaw
and muscle growth would be in the same degree of develop-
ment.

CONCLUSION
We presented a novel face-related movement recognition sys-
tem called CanalSense. It recognizes face-related movements
using barometers embedded in earphones. The system recog-
nizes face-related movements based on air pressure changes
inside the ear canal. The results of our experimental evalua-
tion showed that the recognition accuracies for eleven face-
related movements were 87.6%, and the accuracies for four
levels of Open Mouth were 87.5%, using random forest.
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