
Converting Statecharts into Java Code

Jauhar Ali and Jiro Tanaka

Institute of Information Sciences and Electronics

University o f Tsukuba

Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 Japan

jauhar@softlab.is.tsukuba.ac.jp and jiro@.is.tsukuba.ac.jp

ABSTRACT
This paper presents an implementation model to

convert statecharts, representing the behavior of multi-
state classes in a system, into executable code in an
object-oriented language like Java. The concept of a
helper object is introduced which handles all the state-
specific requests forwarded to it by the multi-state domain
object. A new helper object replaces the old one, whenever
the state of the domain object changes. The proposed
model follows the object variant of statecharts supported
by the Unified Modeling Language (UML). Our model
can work as a basis for automatic code generation for
object-oriented systems.

Keywords
Statecharts, OOA/D, Implementing object behavior,

Java

1 INTRODUCTION
Statecharts (Harel, 1987, 1988; Harel and Naamad,

1996), originally designed for modeling reactive systems,
are used by most of the current object-oriented
methodologies (Rumbaugh et al., 1991; Jacobson, 1992;
Booch, 1991; Desfray, 1994; Rational Software
Corporation, UML) to describe the dynamic behavior of a
system. Statecharts are characterized by a number of
conceptual shortcuts, such as hierarchical states,
concurrent states, and history and branch nodes, which, in
combination, achieve a significant compaction of
specifications over most other state-based formalisms.

A statechart attached to a class specifies all behavioral
aspects of the objects in that class. Some classes do not
need statecharts because their objects are uni-state, and
they always behave in the same way.

To implement the classes of an object-oriented system,
one has to implement the corresponding statecharts which
specify the behavior of the classes. A large fraction of
programmers, however, have difficulty in converting
statecharts into executable code because most

programming languages do not provide syntactic support
for statecharts.

We have been working on implementing the dynamic
behavior of an object-oriented system. Some of the results
of our research, which includes a limited treatment of state
transition diagrams, have already been published (Ali and
Tanaka, 1996, 1997, 1998a, 1998b). The present study
focuses on implementing statecharts in general and
addresses all the important components of statecharts,
such as, hierarchical states, concurrent states, history, fork,
join and branch nodes. We show how statecharts
representing the behavior of a class can be converted to
executable code in Java (Gosling et al., 1996) language.
For notation and semantics, we refer to Unified Modeling
Language (Rational Software Corporation) which has
made few small modifications in the original statecharts to
make it fit into the object-oriented paradigm.

2 STATES AS OBJECTS
Implementing uni-state classes of objects is

straightforward because they always respond to other
objects in the same way. Multi-state objects are difficult to
implement because each time they receive some external
message, they respond differently depending on the states
they are currently in.

Our investigation shows that the implementation of a
multi-state class of objects can be made simple if we
arrange a helper object that encapsulates all the state-
specific behavior of the multi-state domain object. The
helper object represents the current state of the domain
object and implements the behavior specific to the current
state. The domain object delegates all external messages
to its helper object, and the helper object responds to the
messages on behalf of the domain object. Since the helper
object represents only one state of the domain object, its
methods do not contain any conditional statements and are
simple to implement. When the state of the domain object
changes, a new helper object, implementing the behavior
specific to the new state, replaces the old one. The

reference to the helper object is identified as cs (current
state) in the domain class.

We use a cassette player system as an example to
demonstrate our approach. Figure 1 shows a simple
statechart for the cassette player having two states: Stop
and Play. In the Stop state, when a playBut event
occurs, the device executes the startPlay action and goes
to the Play state. In the Play state, when a stopBut
event occurs, the device executes the stopPlay action
and goes to the Stop state. This behavior can be
implemented in Java as follows.

Figure 1: Statechart for a cassette player

class CassettePlayer {
 CassettePlayerState cs; //helper object
 CassettePlayer(){cs = new Stop(this);}
 void stopBut(){cs.stopBut();}
 void playBut(){cs.playBut();}
 void startPlay(){...}
 void stopPlay(){...}
}
class CassettePlayerState {//abstract class
 CassettePlayer context; //reference to domain object
 CassettePlayerState(CassettePlayer c){//constructor
 context=c;
 }
 void stopBut(){}
 void playBut(){}
}
class Stop extends CassettePlayerState {
 Stop(CassettePlayer c){super(c);}
 void playBut(){context.startPlay();
 context.cs = new Play(context);}
}
class Play extends CassettePlayerState {
 Play(CassettePlayer c){super(c);}
 void stopBut(){context.stopPlay();
 context.cs = new Stop(context);}
}

The Stop and Play classes implement the behavior
specific to the Stop and Play states respectively. They
are subclassed from the CassettePlayerState class which
provides a common interface for all state classes. We call
these classes as state classes because they implement
individual states of the statechart attached to the domain
class. All the state classes have a reference to the domain

object identified as context. In short, each state in the
statechart becomes a class and each transition from that
state becomes a method in the corresponding class. All
actions become methods in the domain class. The domain
object forwards all incoming messages (events) to its
current state object (cs).

Internal Transitions, Entry and Exit Actions
A state can have internal transitions, entry action

and/or exit action. An internal transition is specified inside
a state by an event name, followed by a slash (/), followed
by an action name. The action is performed when the state
is occupied and the event occurs. Internal transition does
not cause the state to change. An entry action is performed
whenever the state is entered. It is specified inside the
state by the entry keyword, followed by a slash (/),
followed by the action name. An exit action is performed
whenever the state is exited. It is specified inside the state
as the exit keyword, followed by a slash (/), followed by
the action name. Figure 2 shows the statechart for the
cassette player having an internal transition and the entry
and exit actions in the Play state.

Figure 2: Statechart having entry, exit actions and internal
transition

While executing a transition, instantiating new state
objects takes time. To make the implementation code more
efficient, an instance of each of the state classes can be
created beforehand in the domain class. When a transition
is fired, an appropriate instance, representing the new state,
is assigned to cs instead of instantiating a new object.
Using this optimization technique, Java code for the
statechart of Figure 2 can be written as follows.

class CassettePlayer {
 CassettePlayerState cs; //helper object
 Stop stopState;// reference to Stop state object
 Play playState;// reference to Play state object
 CassettePlayer(){
 // create state objects only once
 stopState = new Stop(this);
 playState = new Play(this);
 cs = stopState;// set default state
 ...}
}

Stop Play

playBut/startPlay

stopBut/stopPlay

Stop

playBut

stopBut

Play

VolumePlusBut/volumeUp

Entry/startPlay

Exit/stopPlay

class Play extends CassettePlayerState {
 void entry(){context.startPlay();}
 void exit(){context.stopPlay();}
 void volumePlusBut(){context.volumeUp();}
 void stopBut(){
 exit();// call the exit action
 context.cs = context.stopState;// set new state
 context.cs.entry();// call the entry action
 }
}

As the above code shows, entry and exit actions
become entry() and exit() methods in the corresponding
class (Play). The CassettePlayerState class should have
empty methods for entry() and exit(). A method
implementing a transition (e.g., stopBut()) first calls the
exit() of the current state, then updates the state, and
finally calls the entry() of the new state.

3 COMPOSITE STATES
A composite state can be decomposed using OR-

relationships into mutually exclusive disjoint substates or
using AND-relationships into concurrent substates. The
substates inherit the transitions of the composite state. In
the case of OR-type substates, only one of the substates
can be active at a given time. In the case of AND-type
substates, all the substates become active simultaneously
whenever the composite state becomes active. In this
section, we show how our statechart implementation
model deals with the two types of state hierarchy.

OR-Type Substates and History Nodes
In a state hierarchy, the superstate has transitions that

are common to its substates. Whereas in an object-
oriented system, a superclass has methods which are
common to its subclasses. The similarity between state
hierarchy and class hierarchy has led us to represent states
as objects and exploit the concept of class inheritance for
implementing state hierarchy.

In our approach, where the state-specific behavior of a
multi-state domain class are implemented as separate
classes (state classes), substates become subclasses of the
class for the superstate. The superclass implements the
behavior specific to the superstate and the subclasses
implement the behavior specific to the substates. As an
example, Figure 3 shows a more detailed statechart
containing state hierarchy for the cassette player. There is
a transition from PowerOn to PowerOff on the
powerBut event. This transition is inherited by the two
substates: Stop and Play. There is a transition from the
PowerOff state to the history node inside the PowerOn
state. This means that the most recent active substate of
PowerOn prior to the entry will be entered. If the
transition is fired for the first time, the Stop substate will
be entered because a transition goes from the history node
to the Stop substate. The following Java code
implements the statechart of Figure 3.

class CassettePlayer {
 //This reference represents the most
 //recent active substate of PowerOn
 PowerOn powerOnHistory;
 CassettePlayer(){
 cs = powerOffState;
 powerOnHistory = stopState;}
 ...
}
class PowerOff extends CassettePlayerState {
 void powerBut(){
 context.cs = context.powerOnHistory;}
}
class PowerOn extends CassettePlayerState {
 void exit(){
 //adjust the history node
 context.powerOnHistory = context.cs;}
 void powerBut(){exit();
 context.cs = context.powerOffState;}
}
class Stop extends PowerOn {... }
class Play extends PowerOn {... }

Figure 3: Statechart having state hierarchy

As can be seen in the code, the powerBut() method is
implemented in the PowerOn class and is inherited by its
subclasses: Stop and Play. The history node inside an OR-
type composite state is implemented by providing a
reference in the domain class. The reference, which
represents the most recent active substate, is updated each
time the composite state is exited.

AND-Type substates
When a composite state contains AND-type substates

(concurrent substates), the substates become active
simultaneously whenever the composite state becomes
active. This means that we need to have the helper object
(cs), representing the currently active composite state,
have references to other objects representing the substates.
The helper object can be thought as a composite object
containing other (substates) objects. That is why, we

Stop

playBut

stopBut

Play

PowerOn

PowerOff

powerBut

powerBut
H

implement the superstate of AND-substates as a
composite class that has references to objects of the
classes implementing the substates. Figure 4 shows
another version of the statechart for the cassette player
containing concurrent states. As can be seen in the figure,
Speaker and Player, though concurrent substates of
PowerOn, are abstract states having other concrete
substates. When PowerOn is active, both the regions of
Speaker and Player are active too. However, either
Left or Right is active in the Speaker region, and either
Stop or Play is active in the Player region. Java code
for this statechart can be written as follows.

Figure 4: Statechart having concurrent states

class CassettePlayer {
 Speaker speakerHistory;
 Player playerHistory;
 CassettePlayerState cs;
 CassettePlayer(){
 cs = powerOffState;
 speakerHistory = leftState;
 playerHistory = stopState;}
}
class PowerOff extends CassettePlayerState {
 void powerBut(){
 //PowerOn becomes active
 context.cs = context.powerOnState;
 //enter the most recent active substates in
 // both regions: Speaker and Player
 ((PowerOn) context.cs).sp =
 context.speakerHistory;

 ((PowerOn) context.cs).pl =
 context.playerHistory;}
}
class PowerOn extends CassettePlayerState {
 Speaker sp;
 Player pl;
 void exit(){
 //updates the most recent active substate
 context.speakerHistory = sp;
 context.playerHistory = pl;}
 void powerBut(){exit();
 context.cs = context.powerOffState;}
 // forwards messages to components
 void speakerBut(){sp.speakerBut();}
 void playBut(){pl.playBut();}
 void stopBut(){pl.stopBut();}
}
class Speaker {void speakerBut(){}
class Player {...}
class Left extends Speaker {
 void speakerBut(){
 ((PowerOn) context.cs).sp = context.rightState;}
}
class Right extends Speaker {...}
class Stop extends Player {... }
class Play extends Player {... }

As can be seen in the implementation code, Speaker
and Player classes just provide common interfaces to their
subclasses. The composite class (PowerOn) has two
references: sp and pl, representing the two sub-regions
inside the PowerOn state. To access these references, we
need to cast explicitly context.cs to PowerOn because the
type of cs is CassettePlayerState which does not contain a
declaration of the references. PowerOn forwards the
requests (events) on which there are transitions within the
AND-substates to the corresponding substate objects.
Transitions from the composite state (e.g., powerBut)
are implemented in the composite class and are not
forwarded to the substate objects. The code also includes
implementation of the history nodes inside the two
regions.

4 COMPOUND TRANSITIONS
A compound transition may have multiple source

states and target　states. A compound transition is enabled
when all of the source states　are occupied. After a
compound transition fires, all of its　destination states are
occupied. A compound transition is shown as a　short bar.
Arrows come from the source states to the bar and go out
from the bar to the target states. The bar may have a
trigger (event),　but the individual segments do not have
any trigger.

Fork
A fork has a single source state and multiple target

states.　Figure 5 shows a statechart having a fork. The
trigger event for the fork is start. This means that when
the　current state is Setup, and the event start occurs,

Speaker

Stop

PowerOff

playButstopBut

Play

PowerOn

powerBut

H

Player

Left

speakerBut

Right

speakerBut

Figure 5: Statechart having composite transitions (fork and join)

both　 A1 and B1 will become active.
Implementing a fork is straightforward. The method in

the source state class, which implements the fork,　makes
all the targets states active, rather than just one state.

Join
A join (also called a synchronization) has multiple

source　states and a single target state. Figure 5 also
contains a join, going from A2 and B2 to　 Cleanup.

Implementing a join needs some thought. There are
many source states　which should all be occupied to fire the
transition. Whenever one of　the source state is occupied,
we need to check whether all of the　remaining source states
are also occupied. If the result is true, the　transition should
be fired. Java code for the fork and join of　Figure 5 can be
written as follows. We suppose that　the domain class name
is Device.　As shown in the code, the fork is implemented
by the start()　method in the Setup class. The join is
implemented by the　entry() methods in the A2 and B2
classes.

class Device {
 DeviceState cs;
 Setup setupState; Processing processingState;
 A1 a1State; A2 a2State; B1 b1State; B2 b2State;
 Cleanup cleanupState;
 ...
}
class DeviceState{//empty method declarations}
class Setup extends DeviceState {
 void start(){//implementing fork
 context.cs = context.processingState;
 ((Processing) context.cs).a = context.a1State;

 ((Processing) context.cs).b = context.b1State;}
}
class Processing extends DeviceState {
 ProcessA a;
 ProcessB b;
 void adone(){a.adone();}
 void bdone(){b.bdone();}
}
class ProcessA {//empty method declarations}
class ProcessB {//empty method declarations}
class A1 extends ProcessA {
 void adone(){
 ((Processing) context.cs).a = context.a2State;
 ((Processing) context.cs).a.entry();}
}
class A2 extends ProcessA {
 void entry(){//implementing join
 if (((Processing) context.cs).b instanceof B2){
 context.cs = context.cleanupState;}}
}
class B1 extends ProcessB {
 void bdone(){
 ((Processing) context.cs).b = context.b2State;
 ((Processing) context.cs).b.entry();}
}
class B2 extends ProcessB {
 void entry(){//implementing join
 if (((Processing) context.cs).a instanceof A2){
 context.cs = context.cleanupState;}}
}
class Cleanup extends DeviceState {...}

Processing

Setup

start

ProcessB

A1
adone

ProcessA

Cleanup

A2

B1
bdone

B2

5 GUARDS AND BRANCHES
A guard condition is a boolean expression that may be

attached to a　transition in order to determine whether that
transition is enabled or　not. The transition is fired only
when the condition is true at the　time the trigger event
occurs. The boolean expression is written in　terms of
parameters of the triggering event and attributes of the
domain object.

A simple transition may be extended to include a tree
structure of　branches. Each branch has a guard condition.
Only one of the branch　is fired at a given time. When the
trigger event occurs, if a branch　has its guard condition true,
it is fired. If no branch has a true　condition, the event is
ignored. Figure 6 shows the　statechart of a telephone
system having a transition with guard　conditions and
branches forming a tree.

Figure 6: Statechart of a telephone system having branches
and guard conditions

To implementing a transition with guard condition, we
put all the code　inside an if statement that checks the
condition. The method 　 is called whenever the
corresponding event occurs while the source　state is active.
But the actual transition code is executed only if　the guard
condition is true. Following is part of the Java code for　the
statechart of Figure 6.

class Dialing extends PhoneState{
 void digit(int n){
 if (numberIncomplete()){
 //code to be in the Dialing State}
 else if (numberValid()){
 //code to go into Connecting State}
 else if (numberInvalid()){
 //code to go into Invalid State}}
}

6 MORE ABOUT EVENTS

Timeout Events
A timeout event results from the expiration of some

deadline. It is specified by the keyword after followed by

an expression that　evaluates to an amount of time. The time
is normally counted since the　state is entered. Figure 7
shows another version of the　cassette player system having
a transition on a timeout event.

Figure 7: Statechart having a time event

To implement timeout events, we have developed a
simple Timer　class which can be used by any state object.
The Timer class　has an integer variable representing the
number of milliseconds and a　reference to the state object
for which a Timer class object is　created. These two
variables are set when a timer object (an　instance of Timer)
is newly created. The timer sends a　timeout() message to
the state object when the specified number　of milliseconds
have elapsed. There is a TimeState interface　that has
timeout() method. The state class should implement　this
interface in order to use the Timer class. A state class　that
has a transition on a timeout event keeps an object of the
Timer class. The Timer class uses a maximum priority
thread so that it can send the timeout() message as soon as
the　time is expired. Before the time is expired, the thread is
in sleep state so it does not effect the usual execution of the
system. Following is the Java code that implements the
statechart of　Figure 7.

interface TimedState {void timeout();}
class Timer extends Thread {
 int millisec; TimedState state;
 //constructor
 Timer (TimedState s, int ms) {
 state = s;millisec = ms;
 setPriority(Thread.MAX_PRIORITY);}
 void run() {
 //goes to sleep until the time is expired
 try {sleep(millisec);
 catch (InterruptedException e) {
 //send timeout message to state
 state.timeout();}
}

Dialing

Digit(n)

Connecting

Invalid

[numberValid]

[numberInvalid]

[numberIncomplete]

Play

CassetteEndReached

CassetteEnd

Stop

After(5 seconds)

class CassetteEnd extends CassettePlayerState
 implements TimedState {
 void entry(){
 // set a new timer to 5 secs upon entry
 timer = new Timer(this,5000);timer.start();}
 void timeout(){//called from the timer
 context.cs = context.stopState;}
}

Calls and Signals
Until now, the discussion was about events (external

messages)　received by an object and its response to those
events on the basis of　its current state. The events can be
the result of an operation call　by some object, in which
case they are called call events. An　event can also come
from the system's event dispatcher, in which case　it is a
signal event. Following the UML semantics, our
implementation model assumes an event queue and an
event dispatcher　maintained by the system.　Call events are
simple to implement. The sender object just calls an
operation in the receiver object. This becomes an event for
the　receiver object which responds to the event. There
should be a method　 in the receiver object's class to
implement the operation. When the　operation is called,
control is transferred from the sender object to　the receiver
object. After executing the operation, control is　transferred
back to the sender object.

In the case of signal events, however, the sender object
does not call　directly an operation of the receiver object.
Instead, the sender　places the event (operation call for a
particular object) in an event　queue maintained by the
system. Control remains in the sender object.　An event
dispatcher, maintained also by the system, runs in a
separate　thread dispatches the events from the event queue
to the specified　objects one by one.

As for as an object is the receiver of events, we need
nothing to do　special in its implementation. However,
while responding to some　 event, if an object sends
messages to other objects, we need to　differentiate calls
and signals. In the case of a call, a method in　the receiver
object will have to be called using a reference to that　object
in the sender object. In the case of a signal, the method
name　and the receiving object reference will have to be
placed in the　system's event queue.

7 DISCUSSION
We put all behavior associated with a particular state

into one　object. Because all state-specific code is contained
in a single　class, new states and transitions can be added
easily by defining new　 classes and operations. An
alternative would be to use data values to　define internal
states and have the operations in the domain class　check
the data explicitly. In such case, state transitions are
implemented as assignments to some variables and have no
explicit　representation. This may be good for efficiency but
the actual　behavior of the system that was represented as a
set of statecharts is　buried into the code. It is very difficult
to understand the behavior　of the system by looking only at
the code. Representing different　states as separate objects

makes the transitions more explicit and the　code more
understandable. This keeps the flavor of statecharts in the
implementation code and is also very helpful for reverse
engineering　the code back into statecharts.

Our approach may look like introducing too many
classes, because the　 behavior for different states is
distributed across several state　classes. This increases the
number of classes and the implementation　of behavior is
less compact than a single class. However, such　distribution
eliminates large conditional statements. Large　conditional
statements are undesirable because they tend to make the
code less understandable and difficult to modify and
extend.

8 RELATED WORK
The most related work is that of Harel and　Gery (1996,

1997), whose tool called　Rhapsody (I-Logix Inc.) generates
C++ code from statecharts attached　to classes in object
diagram. The papers reporting the tool do not　explain well
the generated code, but their approach can be understood
by looking at the actual code generated by Rhapsody. The
similarity　between our model and Rhapsody's model is that
both implement the　states of a statechart as objects. The
differences lie in the　treatment of state hierarchy, events
and transitions. In Rhapsody's 　 model, events are
implemented as classes; state hierarchy is　implemented by
having pointers to super/sub-state classes; and　transition
searching is performed by executing a switch　statement.
Whereas in our model, events become methods; state
hierarchy is implemented by inheritance; and transition
searching is　automatically performed by using the concept
of polymorphism. These differences in the mechanisms
make the resulting　code of our model simpler, more
compact and efficient.

Our mechanism of converting a statechart into
implementation code　has some similarity with the State
pattern (Gamma et al., 1995), but State　pattern neither
addresses the issue of state hierarchy nor does it　address
concurrency within state diagrams.

The relation between states and classes is examined by
Ran (1994). Sane　and Campbell (1995) say that states can
be represented as classes　and transitions as operations.
They implement embedded states by　making a table for the
superstate and do not consider concurrent　states.

9 CONCLUSIONS
An implementation model for statecharts, representing

the behavior of　multi-state classes, has been described. The
introduction of helper　 objects, greatly simplifies the
implementation of multi-state classes　 of objects. By
representing states as objects, the concepts of　inheritance
and object composition can easily be used to implement
hierarchical states and concurrent states. The proposed
model　 successfully deals with almost all statechart
concepts, which include 　 history nodes, branches,
compound (fork/join) transitions, and　timeout, call and
signal events. The proposed model can be used as a　basis
for automatic code generation for an object-oriented
system.

REFERENCES

Ali J. and Tanaka J., 1996, “Automatic Code
Generation from the OMT-based Dynamic Model,”
Proceedings of the Second World Conference on Integrated
Design and Process Technology, vol.1, pp. 407-414, Austin,
Texas, USA.

Ali J. and Tanaka J., 1997, “Generating Executable
Code from the Dynamic Model of OMT with
Concurrency,” Proceedings of the IASTED International
Conference on Software Engineering (SE'97), pp.291-
297, San Francisco, California, USA.

Ali J. and Tanaka J., 1998a, “Implementation of the
Dynamic Behavior of Object Oriented System,”
Proceedings of the Third World Conference on Integrated
Design and Process Technology, pp.281-288, Berlin,
Germany.

Ali J. and Tanaka J., 1998b, “Implementing the
Dynamic Behavior Represented as Multiple State
Diagrams and Activity Diagrams,” Proceedings of
AoM/IAoM 16th Annual International Conference, pp.61-
68, Chicago, USA.

Booch G., 1991, “Object Oriented Design with
Applications,” Benjamin/Cummings, Redwood, California,
USA.

Desfray P., 1994, “Object Engineering: The Fourth
Dimension,” Addison Wesley, Reading, Massachusetts,
USA.

Gamma E., Helm R., Johnson R., and Vlissides J., 1995,
“Design Patterns: Elements of Reusable Object-Oriented
Software,” Addison Wesley, Reading, Massachusetts,
USA.

Gosling J., Joy B., and Steele G., 1996, “The Java
Language Specification,” Addison Wesley, Reading,
Massachusetts, USA.

Harel D., 1987, “Statecharts: A Visual Formalism for
Complex Systems,” Science of Computer Programming,”
no.8, pp.231-274.

Harel D., 1988, “On Visual Formalisms,”
Communications of the ACM, vol.31(5), pp.514-530.

Harel D., and Gery E., 1996, “Executable Object
Modeling with Statecharts,” Proceedings of 18th
International Conference on Software Engineering,
pp.246-257.

Harel D., and Gery E., 1997, “Executable Object
Modeling with Statecharts,” Computer, vol.30(7), pp.31-
42.

Harel D., and Naamad A., 1996, “The STATEMATE
Semantics of Statecharts,” ACM Transactions on Software
Engineering and Methodology, vol.5(4), pp.293-333.

i-Logix Inc., “Rhapsody,” http://www.ilogix.com.

Jacobson I., 1992, “Object-Oriented Software
Engineering: A Use Case Driven Approach,” Addison
Wesley, Reading, Massachusetts, USA.

Ran A. S., 1994, “Modeling States as Classes,”
Proceedings of the Technology of Object-Oriented
Languages and Systems Conference.

Rational Software Corporation, “ Unified Modeling
Language (UML),” http://www.rational.com.

Rumbaugh J., Blaha M., Premerlani W., Eddy F., and
Lorensen W., 1991, “Object-Oriented Modeling and
Design,” Prentice Hall, Eaglewood Cliffs, New Jersey,
USA.

Sane A., and Campbell R., 1995, “Object-Oriented
State Machines: Subclassing, Composition, Delegation,
and Genericity,” ACM SIGPLAN Notices, OOPSLA'95,
vol.30, pp.17-32, Austin, Texas, USA.

