
Providing Interactive Site Ma ps for Web Navigation 

 

 
Wei Lai 

Department of Mathematics and 
Computing 

University of Southern Queensland 
Toowoomba, QLD 4350, Australia  

 
 

Jiro Tanaka 

Institute of Information Sciences and 
Electronics 

University of Tsukuba 
Tsukuba, Ibaraki 305-8573, Japan

Abstract One-dimensional linear navigation 

method is commonly used in current Web browsers. 

That is, a Web page may include some highlighted 

text  strings that  are linked to other Web pages. This 

kind of navigation from one page to another page 

lacks the whole structure overview required for 

relationships between Web pages. This paper 

presents how to use tree structure diagram s, a 

2-dimentional view, as site maps for Web navigation. 

According to the user ’s focus in the process of Web 

navigation, a tree diagram is formed as a site map 

for each Web page dynamically. The user can 

interact with the tree-based sitemap to navigate to 

another site map or looking at a detailed view (i.e. a 

Web page) for a node in the tree diagram. The user 

can also adjust the diagr am for getting a preferred 

tree diagram layout if the user does not like the 

default layout form. 

 
Keywords: web navigation, tree structure 
diagrams, site maps, interaction  

 

1. Introduction 
 

The amount of information now available 

through the World Wide Web (WWW) has 
grown explosively. An increasing number 

of tools are available to assist the user to 
manage and access information on the 

WWW, such as Netscape and Internet 
Explorer. The key requirement for a Web 

browser is to show the details for the user’s 
foc used information and facilitate 

navigation within the whole information 
hyperspace. However, it is impossible to 

display this huge and growing hyperspace 
for the user to get its whole structure in 

helping navigation. The navigation 
approach used in most Web browsers is 

from one page to another page. Although 
current Web browsers can give bookmarks 

and history lists, which are at most a linear 
list, they cannot provide relationships 

between the URLs.  
 

Some researchers have proposed  “site 
mapping” methods [ 1, 2] to attempt to find 

an effective way of constructing a 



structured geometrical map for one Web 

site (i.e. a local map). However, this can 
only guide the user through a very limited 

region of cyberspace, and does not help 
users in their overall journey through 

cyberspace. 
 

Other researchers use a graph for WWW 
navigation. The whole cyberspace of the 

WWW is regarded as a Web graph [3, 4]. 
This approach more emphasizes on 

navigation and it does not pay more 
attention to getting better local view for site 

mapping.  The graph layout in this 
approach is not hierarchical structure for 

hyperlinks and can not guarantee no node 
overlapping. This makes a site -mapping 

view sometimes unclear to the user.  
 

This paper introduces our method of using 
hierarchical tree structures to represent 

subsets of the Web graph for Web 
navigation.  A subset is formed based on 

the user's interaction. The subset should be 
changed dynamically and should follow the 

user's focus in navigation. This change 
from one subset to another should preserve 

the user's mental map [5, 6] for WWW 
navigation.  We call these subset local site 

maps. 
 

The main feature of our web graph 
interface is that we use tree diagrams as site 

maps for Web navigation, as the hyper 
documents’ URLs embedded in a Web 

page’s HTML file is a tree based 

hierarchical structure. We also focus on the 

local site map design. The user can interact 
with the tree diagram for navigating to 

another tree diagram or looking at a 
detailed view (i.e. a Web page) for a node in 

the tree diagram. The user can also adjust 
the diagram for getting a preferred tree 

diagram layout if the user does not like the 
default layout form. 

 
In the following section, we show some 

examples of our site map displays. Section 
3 introduces some design issues about our 

system. The techniques for tree diagram 
layouts are described in Section 4. We 

conclude and discuss our approach in 
Section 5. 

 
2. Examples of Site Map Displays 
 
The best way to show our site map displays 

is to use some examples. Figure 1 shows an 
on-line site map which is converted by 

parsing and filtering the Web page: 
www.sci.usq.edu.au. We provide three 

kinds of modes for the user’s interaction: 
Editing, Navigation, ShowPage, which can 

be set up by clicking the left button, middle 
button, right button on the mouse 

respectively.  
 

In the Editing mode, the user can edit and 
adjust tree diagram layout. For example, 

the user can change a site map from a 
horizontal tree (i.e. h-tree) in Figure 1 to a 

tip-over tree shown in Figure 2. 



 

 

 
Figure 1: A tree-based site map 

 
 

 
 

Figure 2: Another tree layout form for the 
same site map 

 
In the Navigation model, the user can 

navigate the Web space by selecting the 
nodes in the tree diagram. For example, 

after the user clicks the node ‘Courses’ and 
the node ‘Bachelor Courses’ in  Figure 2, 

another tree-based sit map (see the window 
on the left in Figure 3) is shown up based 

on the user’s current focus node  ‘Bachelor 
Courses’.

 



 
 

Figure 3: Navigation to another site map 

 
Our system can support the display of a 

detailed Web page corresponding to a 
node in a tree -based site map (after the 

ShowPage mode is set up).  For example, 
after the user selects the node 

‘DD75-Bachelor of Information 
Technology’  in the window on the le ft in 

Figure 3 in the ShowPage mode, the 
window on the right in Figure 3 is shown 

up to display the detailed view for this 
node. 

 

3. System Design 
 
Our system design integrates techniques 

on graphical user interfaces, automatic 
graph layout, distributed computing, 

Internet and Web programming, 

computer networks and data 

communications. This section introduces 
some design issues. 

The architecture for our system includes two 
major components: a Web graph user 

interface component and a dialog component 
for the communication between the Web 

graph user interface and the WWW. 
 

The Web graph user interface component 
displays Web sub-graphs (i.e. a tree diagram) 

and provides some editing functions for the 
user to adjust a graph layout, to navigate the 

Web graph by choosing a focused node, and 
so on. It provides three kinds of modes for 

the user's interaction with the tree-based site 
map as mentioned in Section 2. 

 



The dialog component supports the 

construction of Web sub-graphs by 
communicating with Web sites over the 

Internet. It can quickly search the entire 
neighborhood of the focused node to 

form a Web sub-graph. 
 

The dialog component has a Web site 
parser and an information filter. The 

Web site parser analyses the HTML file 
of the Web site corresponding to the 

focused node and extracts the hyper 
documents’ URLs linking to this Web 

site to form nodes and edges in the Web 
graph. To reduce the complexity of Web 

graph, the information filter removes 
unnecessary information (edges and 

nodes) generated by the parser and only 
retains the essential part of the real Web 

graph. This simplified visualization is a 
tree structure. Then the Web graph user 

interface component maintains the user's 
orientation for Web exploration and it 

also reduces the cognitive effort required 
to recognize the change of views. This is 

done by connecting successive displays 
of the sub-set of the Web graph and by 

smoothly swapping the displays via 
animation. 

 
We use the Java programming language 

as the major software development tool 
for the implementation of our system. A 

prototype of the Web graph user 
interface for WWW navigation has been 

developed. The techniques for drawing 

tree diagrams in our system are introduced in 

the following section. 
 

4. Tree Diagram Layout 
 

Each on-line Web page’s HTML source file 
is downloaded and then is converted into a 

tree structure by our system. The reason to 
use tree diagrams is that the tree structure can 

be used to show hypertext hierarchical 
relations. For a tree diagram layout, we 

should consider the user’s requirements. 
Different users may need different tree 

structure diagrams. In Figure 4, there are five 
layout forms of a tree. Which one is the 

“nice” layout?  This should be decided by the 
user. 

 
 

 
Figure 4: Five layout forms of a tree structure 

 
Our system integrates some facilities for 

drawing various tree diagrams. Our Web 



graph interface allows the user to select a 

tree diagram layout that he/she wants. 
 

The tree structure used in our system is 
designed for supporting interactive 

layout operations. For a node’s graphical 
appearance, each node in the tree 

structure is assigned some geometrical 
attributes such as its size, central 

position, shape and so on. Another 
feature is that each node is also assigned 

an attribute layout form. A layout form 
for a node specifies a layout function 

operating on this node’s sub-tree. For 
example, Figure 4 shows five layout 

forms of a node A and its layout forms 
are inclusive-v , inclusive-h, h-tree, 

tip-tree and radial respectively.  
 

We can get a tree diagram layout by 
defining layout forms for nodes. The 

default layout form for the root node is 
h-tree. The other nodes’ default layout 

form is to inherit the layout form from its 
parent node in an object-oriented fashion. 

Figure 1 shows a tree diagram layout by 
default layout forms for it nodes. 

 
A different layout can be obtained by 

changing the definition of layout forms 
for some nodes. For example, by 

changing the definition of layout forms 
for the node ‘Department of 

Mathematics and Computer’ in Figure 1 
to tip-tree, we can have another layout 

shown in Figure 2. 

 

Our system provides a layout toolbox for the 
user to operate just on the graphical 

appearance of a node. The layout toolbox 
includes S-toolbox and L-toolbox. The 

S-toolbox contains a selection of shape forms. 
The L-toolbox contains a selection of layout 

forms. The user can choose any one of the 
shape (or layout) forms in the layout toolbox 

and select a node in the tree diagram to 
change that node’s graphical appearance 

dynamically. 
 

The layout toolbox gives the user a choice of 
aesthetics and drawing conventions. Figure 4 

is an example of five different layout forms 
available with the layout toolbox for the 

same graph. The layout toolbox allows the 
user to experiment interactively in order to 

achieve a satisfactory result. 
 

In our system, we draw a tree in h-tree layout 
form as shown in Figure 4 (c) by putting 

every sub-tree within a rectangle (see Figure 
5 (a)). We use the same approach to tip-over 

tree drawing (see Figure 5 (b)). Although this 
approach cannot produce a tree drawing as 

compact as those tree drawing algorithms [7, 
8, 9], it is more flexible for changing a 

sub-tree from one form to another. For 
example, we can change the sub-tree in 

Figure 5 (a) to Figure 5 (b). If a sub-tree 
overlaps another sub-tree,  the layout 

adjustment technique, the force-scan 
algorithm [6], is applied. 

 



 
Figure 5: Drawing a sub tree in a 

rectangle 

 
The method for radial tree drawings (for 

example, see Figure 6 (e)) is introduced 
in [10]. We have developed a method for 

drawing inclusion trees (as shown in 
Figure 4 (a) and (b) ). The method 

focuses on the creation of various 
inclusion trees by changing the gaps 

between a node and its inside nodes, and 
the gap amongst inside nodes. 

 
The inside_gaps defines a set of gaps for 

a node. It includes: g_gap, l_gap, r_gap, 
u_gap  and b_gap. The parameter g_gap 

defines the minimal gap between two 
inside nodes. The parameters l_gap, 

r_gap, u_gap  and b_gap represent the 
minimal gaps between the inside nodes 

and left side, right side, up side, and 
bottom side of the node, respectively. 

Figure 6 illustrates these gaps. 
 

 

Figure 6: The inside gaps 
 

 
For example, the diagram in Figure 7 (a) is 

the result of applying a layout function for 
drawing a tree in inclusive-h  layout form. 

That is to draw the nodes in a horizontal 
arrangement with the definition of that: all 

gaps are a default value (a fixed size). Figure 
7 (b) is the result after changing all gaps 

(except u_gap) to be zero for the inclusive-h 
tree in Figure 7 (a). 

 
A dialogue box (see Figure 8) is provided for 

the user to define the gaps for an inclusion 
tree diagram (General means g_gap , Left 

l_gap , Right r_gap, Top u_gap , and Bottom 
b_gap). 

 

 
Figure 7: A tree based form drawing 

 



 

 
Figure 8: The dialogue box for defining 

gaps 

 

5. Conclusion 
 

This paper introduces a new Web 
navigation system that provides visible 

subsets of the Web graph using tree 
diagrams. Our system creates an 

automatic tree diagram layout that does 
not overlap or exceed the viewing area. 

A tree diagram can be displayed 
automatically for each Web page during 

Web navigation. Also, the user is 
allowed to interact with the tree diagram 

to get a preferred layout if the user does 
not like the default layout form.  

 
Recent feedback from users is that they 

would like to combine our Web graph 
interface and a current Web browser 

(such as Netscape) together for Web 
navigation. It seems that they do not like 

to use the Web graph interface alone for 
navigation. 

 

Further work is needed to improve the Web 

graph user interface. In particular, we will 
continue to investigate layout techniques that 

will enhance potential usability of the system. 
We feel that a new Web browser should 

integrate the features in current Web 
browsers (such as Netscape and Internet 

Explorer) and our tree -based site mapping 
approach. 

 

References 
 

[1] Pilgrim, C. and Leung, Y. 1996, 

‘Applying Bifocal Displays to Enhance 
WWW Navigation’, Proceedings of the 

Second Australian World Wide Web 
Conference. 

 
[2] Maarek Y. S. and  Shaul, I. Z. B. 1997,  

‘WebCutter: A System for Dynamic and 
Tailorable site mapping’, Proceedings of 

the Sixth International World Wide Web 
Conference, pp. 713-722. 

 
[3] Huang, M., Lai, W. and Zhang, Y. 1999, 

‘Mapping and Browsing the Web in a 2D 
Space’, Proceedings of the 10th 

International Workshop on Database and 
Expert Systems Applications, pp. 

248-252, IEEE Computer Society Press, 
at Florence, Italy, September. 

 
[4] Lai, W., Huang, M., Zhang, Y. and 

Toleman, M. 1999, ‘Web Graph Displays 
by Defining Visible and Invisible 

Subsets’, Proceedings of the Fifth 



Australian World Wide Web 

Conference, pp. 207-218. 
 

[5] Eades, P., Lai, W., Misue, K. and 
Sugiyama, K. 1991, ‘Preserving the 

Mental Map of a Diagram’, 
Proceedings of COMPUGRAPHICS 

91 , pp. 34-43. 
 

[6] Misue, K., Eades, P., Lai, W. and 
Sugiyama, K. 1995, ‘Layout 

Adjustment and the Mental Map’, 
Journal of Visual Languages and 

Computing, No. 6, pp. 183- 210. 
 

[7] Reingold, E. and Tilford, T. 1981, 
‘Tidier Drawings of Trees’, IEEE 

Transactions on Software 
Engineering, Vol. 7, No. 2, pp. 

223-228. 
 

[8] Moen, S. 1990, ‘Drawing Dynamic 
Trees’, IEEE Software, pp 21-28, 

July. 
 

[9]  Bliesch, S. 1993, ‘Aesthetic Layout 
of Generalized Trees’, Software 

Practice and Experience, Vol. 23, 
No. 8, pp. 817-827. 

 
[10] Eades, P. 1991, ‘ Drawing Free 

Trees’, Technical Repor t 
IIAS-RR-91-17E, Fujitsu Limited, 

Japan. 
 

 

 

 
 

 
 

 
 

 


