
Execution Visualization and Debugging in
Three-Dimensional Visual Programming

Toshiyuki Okamura Buntarou Shizuki
Jiro Tanaka

Department of Computer Science,
Graduate School of Systems and Information Engineering,

University of Tsukuba,
{okamura,shizuki,jiro}@iplab.is.tsukuba.ac.jp

Abstract

To support the programmer to debug a visual program,
this paper proposes animated execution, and supporting
functions that should be used in combination with animated
execution. Animated execution animates state transitions
while execution of the program proceeds. To make the ani-
mation easily recognizable for the programmer, the anima-
tion is displayed in a similar manner with the visual pro-
gram. The functions are used for narrowing possible loca-
tions of bugs and for testing fixed components quickly. We
have implemented animated execution and the functions on
3D-PP, our three-dimensional visual programming system.

1. Introduction

In contrast to casual text based programming, which rep-
resent programs with text, visual programming represent
programs with graphs. This graphical representation is quite
good at in explicitly showing relationship between compo-
nents and data dependencies.

However, representing execution of visual programs for
debugging is still waiting for some consideration. At first,
debugging a program usually requires the following three
functions:

Monitoring data at runtime. Monitoring data to compare
input data of a component with corresponding outputs
is a basis in checking correctness of the component.
This is also used to narrow possible locations of a bug
into one or some components.

Monitoring control flow of the execution. Monitoring
control flow is used to recognize that there is buggy be-
havior. This also helps the programmer guess the type

of the buggy behavior. For example, if the execu-
tion terminates very quickly than the programmer ex-
pects, she/he can guess that the termination is caused
by some faults such as division by zero.

Testing a component.Once a component is modified or
newly programmed, it is necessary to test the compo-
nent with some input values. The programmer should
be supported to perform the test easily.

Moreover, it is desirable to provide the functions for
monitoring data and control flow in a user-friendly man-
ner. If execution is represented with text, the programmer
is forced to associate the textual representation of execu-
tion with the original visual representation of the program.

The goal of this paper is to provide the above three func-
tions in an integrated and user-friendly manner. To achieve
the goal, this paper proposes (1)animated executionand (2)
additional functions for debugging which is used with an-
imated execution. Animated execution provides a mecha-
nism for browsing data and monitoring control flow. It “di-
rectly executes” the program; it animates execution using
the same representation with the visual program. Therefore,
the programmer can easily understand what animated exe-
cution shows. The additional functions provides the mech-
anisms mainly for testing components and for narrowing
possible locations of bugs.

We have implemented animated execution and the addi-
tional functions on 3D-PP[7, 8], the three-dimensional ex-
etension of our two-dimensional visual programming sys-
tem PP[10].

2. 3D-PP

A program of 3D-PP is a hierarchical three-dimentional
graph composed of nodes and edges. Nodes correspond to
data, operators, andprocesses. The shape of a node rep-
resents its type; spheres represent data, such as integers and



(a) (b)

(c)

Figure 1. Programming constructs in 3D-PP

strings, or variables; upside-down cones represent operators
such as addition, modulo, and comparison; pillars repre-
sent processes. An edge correspontds data dependency. Fig-
ure 1a is an example program. The program adds 10 and 25.
It also spawns a process labeledgcd with 30 and the result
of the addition as the arguments. The result will be assigned
to variableout.

A process is defined as a set ofrules. Figure 1b shows the
definition of processgdc. It shows that the process has four
rules. A rule consists of two parts, aconditionand abody.
The condition part is used to select one rule from multi-
ple choices at runtime. This mechanism enables the pro-
grammer to define conditonal behaviors. The body part de-
fines the rule’s actual performance when the rule is selected.
Each part is represented as a graph. Figure 1c shows one
rule of gcd. The condition graph is located upper side. The
body graph is located lower side. The body graph is con-
sists of data, operators, andsub-processesthat is a process
used in the body graph. Cones located at both of the up-
per and lower side of the rule represent arguments.

Execution of a program consists of parallel sequences of
applications ofexecutableoperators and processes. An op-
erator or a process is executable when all of its argument are
available. Execution continues until there is no executable
operator or process.

In 3D-PP, the programmer edits programs by directly
manipulating the three-dimentional graphs on the screen us-
ing pointing devices[6].

3. Animated Execution

To animate an execution of a program to support debug-
ging, providing the following three points is necessary:

1. Visual representation of execution state for each step
of the execution to visualize data.

2. Visual representation of state transition as the execu-
tion proceeds step by step to visualize control flow.

3. Functions for controlling the above visualization for
browsing execution.

The next two sections describes how animated execution
achieves the above three points.

3.1. Visual representation of execution state and
state transition

This section describes how animated execution repre-
sents both of execution state and step-by-step state transi-
tion, by using a small example. Figure 2 shows the snap-
shots of the animated execution of the program in Figure 1a.

Animated execution shows application of an operator by
getting the operator and its arugments closer and closer,
smoothly. The outputs from the operator are displayed by
replacing the operator and its arguments with the output
data. Figure 2a shows that operator+ is selected for being
applied; processgcd is not executable since one of its argu-
ments is not available in Figure 1a. Two integer,10 and25,
are being moved toward the operator. In Figure 2c, the inte-
gers and operator+ are replaced with integer35. Now, pro-
cessgdc becomes executable.

Application of a process is animated by expanding the
process to show all the rules of the process and to high-
light the selected rule. The arguments of the rule are then
connected to the real data. Other rules are vanished. Fig-
ure 2c is the snapshots after expanding processgcd. Ani-
mated execution renders the wireframes of processgcd to
show the four rules ofgcd within the wireframes. A se-
lected rule is then blinked and enlarged until it has the same
size as the original process as Figure 2d shows. This fig-
ure shows the state after one rule is enlarged and others are
vanished. This figure also shows that two integer30 and
35 connected to the argument of the rule are now being re-
connected to the body graph of the selected rule. The result
is Figure 2e. The animation continues to show the applica-
tion of operatormod, as shown in Figure 2f, and another
application of processgcd, as shown in Figure 2g in a sim-
ilar way.



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2. Snapshots of animated execution

Finally, computation of the graph shown in Figure 2g
produces the graph of Figure 2h. This is the result of this
execuion. The graph is composed of variableout and inte-
ger5. It indicates that the variable is assigned 5. Now there
is no executable operator or process, the animated execu-
tion stops.

3.2. Functions for controlling animation

To enable the programmer to control animated execution
easily for browsing entire animation and for examining sus-

picious portion of the animation in detail, animated execu-
tion provides the following functions.

Suspension.Animation can be stopped whenever the pro-
grammer wants. The animation can be resumed from
the stopped point.

Rewind. The programmer can undo the animation from
any point of the animation. It is possible to rewind the
animation even after the execution has terminated.

Replay. The programmer can redo the above undo opera-
tion. Combination of rewinding and replaying enables



(a) (b)

Figure 3. Marking data with normal propaga-
tion

the programmer to examine the execution in detail by
playing the animation back and forth.

Changing speed.It is possible to change the frame rate of
the animation.

Changing view. During suspension, the programmer can
change viewpoints by panning, zooming, and rotating.
It is also possible to move the location of objects such
as data and processes to examine occluded objects by
others.

4. Functions for Debugging

To support the programmer to test processes and to nar-
row possible buggy processes, three kinds of functions for
debugging are available along with animated execution:
rewriting for speeding up testing and modification of pro-
cesses, marking data for tracing data, and marking rules for
narrowing suspcious implementation.

4.1. Rewriting data and rules

While the animated execution is suspended, the pro-
grammer can edit the state at runtime and the program it-
self, such as values of data and connection of edges of rules.
When the animation is resumed after editing, the program-
mer observes the animated execution that is derived from
the editted data and programs. In addition, the edited values
or programs are recovered when the animation is rewinded.

This mechanism, in combination with animated execu-
tion, is a powerful tool to test and debug a process quickly.
Suppose that some suspicious behavior of a program is
caused by a buggy implementation of a process of the pro-
gram. When the programmer sees the suspicious behavior
during its animated execution, the programmer stops the an-
imation and rewinds it back to the point where the behav-
ior begins. Note that finding the point is easy by playing the
animation back and forth. After the programmer finds the
buggy process, the programmer rewrites rules and restarts

the animation from the suspended point. Now, the program-
mer can observe whether the modification is correct or not.
Moreover, the programmer can test the modification fur-
ther by giving some different input values to the process
by rewriting data and then restarting the animation.

The modification of programs with this mechanism does
not modify the original program. The programmer must ex-
plicitly commits the modification into the original program
when necessary. Therefore, this mechanism provides the
programmer with safe and easy “try-and-error” testing and
debugging.

4.2. Marking data

The programmer can mark off arbitrary data while the
animated execution is suspended. Marked data are differ-
ently colored. Moreover, marks are propagated by opera-
tors. There are two types of propagation, normal and re-
verse. In normal propagation, if marked data are assigned
as input arguments of an operator, the result of the operator
are also marked in the animated execution. In reverse prop-
agation, if marked data is the result of an operator, the input
arguments of the operator is marked in rewinding the ani-
mated execution of the program.

Marking data with normal propagation is used in trac-
ing data along by timeline. An example usage is to highlight
an integer which is used as a counter.

Figure 3 shows an example of marking data with nor-
mal propagation. In Figure 3a, one of the two arguments of
a subtraction operator, integer100, is marked (in red on the
screen). Another argument, integer65, is not marked, thus
displayed in a usual color. The result of this marking is in-
tuitive; integer35, produced by the subtraction, is marked
in red in Figure 3b.

Marking data with reverse propagation is used in trac-
ing back suspicious data along the timeline in reverse order
for finding out where/how the data were produced.

Figure 4 shows an example. Suppose that two integer
2400 and130 were produced as the result of an execution
shown in Figure 4a. When the programmer marks integer
130 (in blue on the screen) and rewinds the animated ex-
ecution, the programmer will observe the snapshot of Fig-
ure 4b and finally the snapshot of Figure 4c. Now, this fig-
ure clearly shows integer30, located leftmost in Figure 4c,
does not affect the calculation of the firstly marked integer
130.

Note that the reverse propagation should be activated iso-
latedly, since it conflicts with other functions such as rewrit-
ing data and marking with normal propagation.



(a) (b) (c)

Figure 4. Marking data with reverse propagation

(a)

(b)

Figure 5. Marking rules

4.3. Marking rules

The programmer can mark arbitrary rules of processes at
any time. Marked data are differently colored (in red on the
screen) with other rules. During the animated execution, the
marked rules appears in the same color. Therefore, the pro-
grammer can concentrate on checking unmarked rules.

Figure 5 shows a marked rule as an example.reverse is
defined with two rules. The right one is marked.

This mechanism is used to distinguish suspicious rules
from trusted rules. First, the programmer marks rules that
can be believed correct. When the programmer confirms
that a rule performs correctly by rewinding the animation
and/or by testing, then the rule should be marked. When all
the rules of a process are marked, then the process can be
believed trusted.

5. Debugging Strategy

This section outlines the standard strategy of debugging
of a program using the above functions with animated ex-
ecution. Firstly, starts and observes the animated execution
of the program. There are three types of buggy behavior:

1. The execution terminates normally but the results are
incorrect. Search the point where the incorrect data
were produced. Combination of marking the incorrect
data with reverse propagation and rewinding the ani-
mation will help this search.

2. The execution terminates due to a fault. The fault was
caused by one of the following two kinds of reason:

(a) A buggy process directly.

(b) A wrong input fed into a (correct) process.

Rewinding the animation a little bit will determine
which was the reason. In the case of (a), modify the
rules of the process. In the case of (b), search the loca-
tion where the wrong input was produced.

3. The execution does not terminate, possiblely falling
in infinite loop or in deadlock. Stop the animation.
Rewind and replay the animation to browse a suspi-
cious behavior, concentrating on checking processes
that have unmarked rules. Try to test the behavior of
the rules during the browse. If you can assure that a
rule is implemented correctly, mark the rule.



Before modifying a rule, unmark the modified rules. Af-
ter modification, test the modified process by giving vari-
ous sets of arguments by rewriting data.

6. Related Works

There are some two-dimentional visual programming
systems that support animation of execution. Examples are
Pictorial Janus[4, 5], Visulan[13], VIPR[1], and KLIEG[11,
9]. Among these systems, the most pieoneering one is Pic-
torial Janus. Pictorial Janus is a two-dimensional visual pro-
gramming system which visualizes a concurrent logic pro-
gramming language called Junus. However, its animation is
similar to a recorded video. That is, the programmer can-
not change runtime states by changing values and chang-
ing the program. Even when the programmer wants to test
some components by giving different input values, the en-
tire animation must be re-created after modification of the
program.

There are also several systems that provide in the
field of three-dimentional visual programming, such as
Toontalk[3], 3D-Visulan[12], and SAM[2]. SAM, the most
recent one of the above systems, is a synchronous paral-
lel, state-oriented, general purpose programming language.
A SAM program is composed of message, agents with
ports, and rule with a precondition and a sequence of ac-
tion. At the execution of SAM, one rule is selected by
condition and its action is executed. SAM animates pro-
duces in a similar way as our animated execution. It
animates selection of rules by growing it and passing argu-
ments into the action by moving them. However, execution
of SAM does not supports such functions as rewrit-
ing data during suspension, rewinding the animation, and
marking with propagation.

7. Conclusions

To support the programmer to debug a visual program,
this paper proposes animated execution. Animated execu-
tion animates state transitions while execution of the pro-
gram proceeds. The animation is displayed in a similar man-
ner with the programs, thus the programmer can easily read
the animation. Moreover, this paper describes three kinds of
functions that should be used in combination with animated
execution: rewriting for speeding up testing and modifica-
tion of processes, marking data for tracing data, and mark-
ing rules for narrowing suspicious implementation. We have
implemented animated execution and the functions on 3D-
PP, our own three-dimensional visual programming system.

References

[1] W. Citrin and C. Santiago. Incorporating Fisheying into a
Visual Programming Environment. InProceedings of 1996
IEEE Symposium on Visual Languages, pages 20–27. IEEE
Computer Society Press, Sept. 1996.

[2] C. Geiger, W. Mueller, and W. Rosenbach. SAM - An
Animated 3D Programming Language. InProceedings of
1998 IEEE Symposium on Visual Languages, pages 228–
235. IEEE Computer Society Press, Sept. 1998.

[3] K. Kahn. Programming by example: generalizing by remov-
ing detail. Communications of the ACM, 43(3):104–106,
Mar. 2000.

[4] K. M. Kahn. Concurrent Constraint Programs to Parse and
Animate Pictures of Concurrent Constraint Programs. In
Proceedings of the International Conference on Fifth Gener-
ation Computer Systems, pages 943–950. ICOT, June 1992.

[5] K. M. Kahn and V. A. Saraswat. Complete Visualizations of
Concurrent Programs and their Executions. InProceedings
of 1990 IEEE Workshop on Visual Languages, pages 7–15.
IEEE Computer Society Press, Oct. 1990.

[6] H. Mitsunobu, T. Oshiba, and J. Tanaka. Claymore: Aug-
mented direct manipulation of three-dimensional objects. In
Proceedings of Asia Pacific Computer Human Interaction
1998 (APCHI’98), pages 210–216. IEEE Computer Society
Press, July 1998.

[7] T. Oshiba and J. Tanaka. “3D-PP”: Three-dimensional visual
programming system. InProceedings of 1999 IEEE Sym-
posium on Visual Languages (VL’99), pages 189–190. IEEE
Computer Society Press, Sept. 1999.

[8] T. Oshiba and J. Tanaka. “3D-PP”: Visual programming sys-
tem with three-dimensional representation. InProceedings
of International Symposium on Future Software Technology
(ISFST’99), pages 61–66, Oct. 1999.

[9] B. Shizuki, M. Toyoda, E. Shibayama, and S. Takahashi.
Smart Browsing among Multiple Aspects of Data-Flow Vi-
sual Program Execution, Using Visual Patterns and Multi-
Focus Fisheye Views. Journal of Visual Languages and
Computing, 11(5):529–548, Oct. 2000.

[10] J. Tanaka. Visual Programming System for Parallel Logic
Languages. InThe NSF/ICOT Workshop on Parallel Logic
Programming and its Program Environments, pages 175–
186. the University of Oregon, 1994.

[11] M. Toyoda, B. Shizuki, S. Takahashi, S. Matsuoka, and
E. Shibayama. Supporting Design Patterns in a Visual Paral-
lel Data-flow Programming Environment. InProceedings of
1997 IEEE Symposium on Visual Languages, pages 76–83.
IEEE Computer Society Press, Sept. 1997.

[12] K. Yamamoto. 3D-Visulan: A 3D Programming Language
for 3D Applications. InProceedings of Pacific Workshop
on Distributed Multimedia Systems, pages 199–206, Hong
Kong, June 1996. The Hong Kong University of Science and
Technology.

[13] K. Yamamoto. Visulan: A visual programming language for
self-changing bitmap. InProceedings of International Con-
ference on Visual Information Systems, pages 88–96, Mel-
bourne, Australia, Feb. 1996. Victoria University of Tech-
nology (in cooperation with IEEE).


