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Abstract 

 
In this work, we make an effort to offer a means of support during the design 
phase of developing a software system. We particularly focus on the dynamic 
aspects, more specifically on two of the several models that are often used 
during design: sequence diagrams and state machine diagrams. 
     Sequence diagrams often represent scenarios. During the requirements 
specifications phase, scenarios are widely used to capture these requirements. 
They are often interrelated in many ways; however, they are usually treated in 
isolation. We take into consideration their possible relationships, we classify 
them, and we propose a new kind of diagrams, named dependency diagrams, 
which are able to represent these relationships.  
     State machine diagrams, on the other hand, represent a compact and 
elegant way of describing behaviour. They can be used for detailed design 
models and they can represent a solid base for the implementation. Together 
with sequence diagrams, they offer many advantages in the software 
development process. 

In order to make use of the benefits of both sequence diagram and state 
machine diagrams, we propose a process of transformation of sequence 
diagrams, as representations of scenarios, into state machine diagrams, based 
on the relationships between the given scenarios. Through the introduction of 
dependency diagrams, we can ensure that the behavior of the system will be 
completely and precisely reflected in the state machine diagrams, according to 
the given specifications.  
     Consequently, our purpose is emphasizing the relationships existing 
between various scenarios obtained during requirements analysis and using 
these relationships for the creation of state machine diagrams that are able to 
provide the complete behavior of the objects involved. Our contribution 
supports the analysis, as well as the design phase, and facilitates the 
implementation process.  
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Chapter 1  

 
Introduction 

 
 

1.1 Motivation and objectives 
 
The past years have seen an increased interest in developing various 

software development processes, models and methodologies. Among the 
phases that have received an increased attention, the design phase occupies an 
important place. Several models to be used during design phase have been 
proposed. Some of them are used in the requirements specifications phase as 
well, while others facilitate the transition to the implementation phase. The 
transformation of one model type into another usually gives a better overview 
of a system. However, this transformation is not always clearly formalized. We 
try to partially fill this lack of formalization in our work. 

A software system can be said to have two distinct characteristics: a 
structural, static part and a behavioral, dynamic part. We are mostly concerned 
with the dynamic part, more specifically, with the dynamic models used during 
the design phase of developing a software system. We focus on two of these 
models: sequence diagrams, because they contain important information 
derived from the requirements specification, and state machine diagrams, 
because they offer behavioral information about the objects involved in the 
system.  

Sequence diagrams can be used to represent scenarios. Although these 
scenarios are generally interrelated, they are often treated individually, as if 
they were isolated from each other. We believe it is important to make a 
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classification of the possible relationships that can exist between scenarios and 
we take these relationships into consideration when transforming sequence 
diagrams, as representation of scenarios, into state machine diagrams. 

Our final objective is to offer a means of support during the design phase, 
with an emphasis on dynamic models, focusing on sequence diagrams and state 
machine diagrams, and offering a solution for the transformation of one into 
the other. 

 

1.2 Structure of the thesis  
 
Our thesis is organized as follows. Chapter 2 offers a background about 

the software development process in general and about UML. Chapter 3 is 
concerned with the relationships between scenarios, their importance, 
classification and representation as dependency diagrams, while chapter 4 
describes the transformation process of scenarios into state machine diagrams. 
In chapter 5 we describe our system MUSEDESK and we illustrate it with an 
example of the transformation process, whereas in chapter 6 we evaluate it and 
make a comparison with another system. Finally, chapter 7 presents concluding 
remarks and future work. 
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Chapter 2  
 
Background 

 
 

2.1 The software development process  
 
In its most simple definition, the software development process is the 

process used to develop a software product. This process entails not only the 
actual writing of the code, but also the definition of the requirements of the 
product, its design, and the confirmation that what has been developed has met 
objectives [44]. 

The software development process is usually guided by some systematic 
software development method. Several methods for the software development 
process have been proposed in the past years. Referred to by a number of terms, 
including process models, development guidelines, and systems development 
life cycle models [44], software development methods generally describe 
approaches to various activities that should take place during the process. 
Typical such activities include: identifying the requirements of the system, 
designing of the system, the actual implementation, testing and maintenance of 
the system. Some of the most popular systems development life cycle models 
and processes are: the waterfall model, the prototyping model, the spiral model, 
rapid application development, joint application development. Other process 
models include iterative processes, agile methods etc.  

Fig. 2.1 shows a simple schema of the classical waterfall model. This 
model takes a sequential and linear approach, in which a project is carried out 
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in a series of steps, and each step must be completed and verified before 
advancing to the next one.  

 

 

Fig. 2.1 The waterfall model 

 
The first important step in developing an application is the one where 

requirements are elicited and then defined. This is where what is required of 
the system is specified. In order to be able to proceed to the implementation 
(writing the code itself), the design of the system needs to be completed, that is 
the defining of how to do what is required of the system. Analysis (a more 
general term including requirements analysis) and design have been 
summarized in the phrase: “do the right thing (analysis) and do the thing right 
(design)”.  

Design is defined as the period of time in the software life cycle during 
which the designs for architecture, software components, interfaces, and data 
are created, documented, and verified to satisfy requirements [37]. Design 
offers a conceptual solution that fulfills the requirements. It represents a 
blueprint from which a reliable system can be built. In particular, during 
object-oriented design there is an emphasis on defining software objects and 
how they collaborate to fulfill the requirements [32]. Object-oriented design 
uses a variety of notations and diagrams. Some of the most commonly used 
such notations and diagrams appear in UML. 
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2.2 The Unified Modeling Language 
 
The Unified Modeling Language (UML) is a language for specifying, 

visualizing, constructing and documenting the artifacts of software systems, as 
well as for business modeling and other non-software systems [45].  

UML represents a notation which has become the de facto standard in 
object-oriented methods. In its current version, 2.0, UML makes use of 13 
diagrams. Three classifications of UML diagrams exist [28]: 

• Behavior diagrams.  A type of diagrams that depict behavioral 
features of a system or business process.  This includes activity, state 
machine, and use case diagrams as well as the four interaction 
diagrams. 

• Interaction diagrams.  A subset of behavior diagrams which 
emphasize object interactions.  This includes communication, 
interaction overview, sequence, and timing diagrams. 

• Structure diagrams.  A type of diagrams that depict the elements of a 
specification which are irrespective of time.  This includes class, 
composite structure, component, deployment, object, and package 
diagrams.   

A software system can be said to have two distinct characteristics: a 
structural, "static" part and a behavioral, "dynamic" part [42]. 

• Static: The static characteristic of a system is essentially the structural 
aspect of the system. The static characteristics define what parts the 
system is made up of. 

• Dynamic: The behavioral features of a system; for example, the ways a 
system behaves in response to certain events or actions are the dynamic 
characteristics of a system. 

Similarly, object-oriented design can be carried out in two ways: at the 
static level or at the dynamic level. According to [40], at the static level, a 
design is formulated as a number of classes which are related to each other in a 



6 

number of ways. The classes may contain attributes and methods. At the 
dynamic level, a design is formulated as a number of objects that are related to 
each other, and which interact with each other by sending messages. Our work 
focuses on the dynamic level, where the designer of the system has to think in 
terms of objects, object relations, and object interactions. 

The UML diagrams that fall under the category of “dynamic” are: state 
machine diagrams, activity diagrams, sequence diagrams and communication 
diagrams. Among these, we are going to focus on two of these diagrams that 
are often used during the design phase: the sequence diagram and the state 
machine diagram.   

 
The current version of UML supports concurrency to a certain extent. 

There are concurrency considerations of some kind in most UML diagrams 
type, as well as in OCL (Object Constraint Language). UML supports three 
levels of concurrency description [55]: 
1. system level ensured by the concurrency between objects (several objects 
may run concurrently at a time); 
2. object level where an object may perform various things at a time (various 
operation executions, and the state machine execution may co-exist); 
3. operation level, which can be described by a state machine with concurrent 
states, or by an internally concurrent action. 

Although several additions and improvements have been made from one 
version to another, there is still a long way before UML can be considered a 
notation perfectly suited for concurrent, real-time systems.  
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Chapter 3  

 
Relationships between Scenarios 

 
 

3.1 From use cases to scenarios to sequence diagrams 
 
Scenarios represent a concept often used during the requirements 

analysis phase, as well as during the design phase of developing a system. 
When it comes to the requirements analysis, its main task is to generate 
specifications that describe the behavior of a system unambiguously, 
consistently and completely [1]. Use cases are a widespread practice for 
capturing the requirements in numerous software processes, particularly the 
functional requirements. They are a means of communicating with users and 
other stakeholders about what the system is intended to do. Use cases capture 
who does what with the system, for what purpose, without dealing with system 
internals. A complete set of use cases specifies all the different ways to use the 
system, and therefore defines all that is required of the system [2]. Use cases 
provide a high-level view of the requirements of the system.  

A scenario is an instance of a use case, and represents a single path 
through the use case. Thus, one may construct a scenario for the main flow 
through the use case, and other scenarios for each possible variation of flow 
through the use case (e.g., triggered by options, error conditions, security 
breaches etc.) [2]. Consequently, for one use case, we will have several 
different possible scenarios. 
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According to [6], a scenario represents a sequence of user-system 
interactions representing a system transaction or a system function from a 
user’s perspective. Some of the reasons scenarios receive so much attention in 
requirements engineering are: they describe the externally visible behavior of a 
system only (avoiding premature design solutions); they describe how users 
work with a system, therefore are easy to validate with these users; they can be 
used both for elicitation and description of requirements; last, but not least, 
they inherit some of the advantages of natural language, without their 
disadvantages [11].  

UML provides a graphical means of depicting scenarios using sequence 
diagrams. Sequence diagrams are commonly used for both analysis and design 
purposes [28]. They typically show a user or actor, and the objects and 
components they interact with in the execution of a use case [43]. One 
sequence diagram typically represents a single use case scenario or flow of 
events. The sequence diagram shows the interactions between objects in the 
sequential order that those interactions occur. During the design phase, 
architects and developers can use the diagram to force out the system's object 
interactions, thus flushing out overall system design [3]. 

In the following, we present a simple example of a use case, followed by 
one scenario for the use case and the sequence diagram that represents the 
scenario.  

Let us consider a simple ATM system, where a user inserts an ATM card 
into an ATM machine; the card has to be authenticated with the bank. The user 
can then perform the desired transaction (withdrawal, deposit, transfer or 
enquiry). The bank reports that the customer's transaction is disapproved in 
case the user introduces an invalid PIN. Fig. 3.1 represents a use case diagram 
for the ATM example (based on the example in [41]). In Fig. 3.2 a textual 
representation (in natural language) of one scenario of the use case is described. 
Finally, Fig. 3.3 illustrates the corresponding sequence diagram for the 
scenario in Fig. 3.2.  
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Fig. 3.1 Use case diagram for an ATM system 

 
 
 
 

 
 
 
 
 
 
 

Fig. 3.2 One scenario for the “Session” use case 

 
Sequence diagrams are an excellent way to document usage scenarios 

and to both capture required objects early in analysis and to verify object usage 
later in design [43]. We can affirm that in the software development process, 
because we start from specifying the requirements of the system, sequence 
diagrams are the earliest well defined / formally specified concepts used. They 
show the requirements of a system in a formally defined way, with precise 
notation, as opposed to use cases, which show a high-level view of the 

Scenario: Card and password verification 
 
The user approaches the ATM, where a main screen is displayed. 
The user inserts the card and then he is prompted to insert the password. 
The user inserts the password. 
The account is verified with the bank and the consortium of banks. 
The account is authenticated. 
An options menu is presented to the user. 
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requirements, or scenarios, which are more or less described using natural 
language. This is one of the reasons why we decided to use sequence diagrams 
as our starting point for model transformation.  

User ATM

Enter password

Insert card

Verify account

Display main screen

Verify card with bank

OK bank account

Request password

Display options menu

OK account

Consortium Bank

 
Fig. 3.3 Sequence diagram corresponding to the scenario in Fig. 3.2 

 

 

3.2 Sequence diagrams as representation of scenarios 
 
A sequence diagram shows objects communicating with other objects 

and the messages that trigger these communications. A sequence diagram lists 
objects horizontally and time vertically, and models these messages over time. 
In a sequence diagram, classes and actors are listed as columns, with vertical 
lifelines indicating the lifetime of the object over time [38]. The basic notation 
used in sequence diagram is summarized in Table 3.1. In its simplest form, a 
sequence diagram looks like in Fig. 3.4. 
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Table 3.1. Sequence diagram basic notation 

Object 

Objects are instances of classes, and are 
arranged horizontally. The pictorial 
representation for an Object is a class (a 
rectangle) with the name prefixed by the object 
name (optional) and a semi-colon. 

 

Actor 

Actors can also communicate with objects, so 
they too can be listed as a column. An Actor is 
modeled using the ubiquitous symbol, the stick 
figure.  

Lifeline 
The Lifeline identifies the existence of the 
object over time. The notation for a Lifeline is a 
vertical dotted line extending from an object.  

Activation 
Activations, modeled as rectangular boxes on 
the lifeline, indicate when the object is 
performing an action.  

Message 
Messages, modeled as horizontal arrows 
between Activations, indicate the 
communications between objects.  

 

: Object1 : Object2
Actor1

Message

Message

 

Fig. 3.4 A simple sequence diagram 
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In the following we give some formal definitions for a sequence 
diagram.  
 
Definition1 
A sequence diagram is a structure (O, M, <), where: 
- O is the set of all objects appearing in the sequence diagram; 
- M is the set of all messages exchanged between objects; 
- < shows a partial ordering of the messages. 
 
Definition 2 
M represents the set of messages.  
Each message is a tuple (Mijk, N, W [,G]), where:  
- Mijk is the kth message originating in object i and going to object j; 
- N is the name attached to the message; 
- W is the type of message; W ∈ {0, 1, 2} (0: simple message, 1: synchronous 
message, 2: asynchronous message); 
- G is the guard attached to the message. 
 
 

As we have shown using square brackets, not all messages necessarily 
have a guard attached to them. (A guard attached to a message shows that the 
message is sent only if the condition included in the guard is met). 

A self message, that is a message sent by an object to itself, can be easily 
identified, since for it we have i=j.  

Lost messages are those that are either sent but do not arrive at the 
intended recipient or which go to a recipient not shown in the current sequence 
diagram. They are denoted by setting j=0.  

Found messages are those that arrive from an unknown sender or from a 
sender not shown in the current sequence diagram. They are denoted by setting 
i=0. 

 
We have decided to focus only on the fundamental aspects of the 

sequence diagrams and we have introduced a few simplifications, therefore not 
using certain features. These simplifications however do not diminish the 
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expressiveness of the sequence diagrams. (For example, throughout our thesis, 
we are going to represent the lifeline in a simple manner, without the activation 
bar.)   

 
For each sequence diagram, we will have a corresponding scenario 

matrix. A scenario matrix is obtained by representing all the interactions inside 
a sequence diagram, and it includes all the messages exchanged between 
objects. (We have decided to use the term “scenario matrix” instead of 
“sequence diagram matrix” for two reasons. The first one is the fact that we 
want to emphasize the idea that a sequence diagram is a representation of a 
scenario. The second reason is purely a language reason, the chosen expression 
is shorter.) 
 
Definition 3 
For a given sequence diagram, a scenario matrix is an ordered list of all 
message tuples (Mijk, N, W [,G]) belonging to the sequence diagram.  

 
The scenario matrix corresponding to the sequence diagram in Fig.. 3.3 

(denoted as S1) appears in Fig. 3.5: 
 

M211, Display_main_screen, 1
M121, Insert_card, 1
M212, Request_password, 1
M122, Enter_password, 1
M231, Verify_account, 1
M341, Verify_card_with_bank, 1
M431, OK_bank_account, 1
M321, OK_account, 1
M213, Display_options_menu, 1

S1 =

 
 

Fig. 3.5 Scenario matrix for the sequence diagram in Fig. 3.3 

 
We should note here that throughout our thesis we often use the term 

“scenario”, along with the term “sequence diagram”. The former term suggests 
the actual use of the system, a non-formal concept, while the latter means the 
actual representation of a scenario as a sequence diagram. 
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3.3 Normalization of sequence diagrams 
 
In their original form, as they are constructed from scenarios (use cases), 

two or more sequence diagrams can overlap. Overlapping denotes the fact that 
a common sequence of messages can be found in two (or more) sequence 
diagrams. We are going to normalize the given sequence diagrams and for this 
we are going to remove the overlapping that might exist between them.  

The reason we want to remove the overlapping is that we consider that it 
is important to maintain the property of having distinct, individual sequence 
diagrams. Fig. 3.6 shows two generic sequence diagrams, A and B, containing 
a common part, denoted as C. We perform the normalization of sequence 
diagram by removing the common part and making it into a new sequence 
diagram, while the remaining non-common part of the initial sequence diagram 
will be kept unchanged. In our generic example here we separated the common 
part of sequence diagrams A and B into a new sequence diagram, named C, 
while keeping the rest of A, that is A1, unchanged. As for sequence diagram B, 
after the separation of the common part C, we are left with sequence diagram 
B1 and sequence diagram B2. They each contain the messages exchanged 
previous to the common messages and following the common messages, 
respectively. Thus, after removing the overlapping, instead of the two initial 
sequence diagrams, A and B, we will have 4 sequence diagrams, A1, B1, B2 
and C.  

 
Overlapping is detected by identifying common messages in the sets of 

messages (in the matrices) of sequence diagrams.  
 
Definition 4 
Two messages are considered common to two different sequence diagrams if 
they are exchanged between the same two objects, they have the same name, 
and they have the same type, that is: (Mijk, N1, W1) and (Mlmn, N2, W2) are 
common if: i=l, j=m, N1=N2 and W1=W2. 
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(Note that k and n do not have to be equal, since they denote the order of 
each message in their respective sequence diagrams and naturally these 
messages can appear at different times in the sequence diagrams.)  

 
 

C

C

B1

B2

BA

A1

BA

A1

B1

B2

C

 
 

Fig. 3.6 Overlapping between sequence diagrams 

 
 

Rule 1 
A new sequence diagram will be created if a sequence of N consecutive 
common messages is found in two or more sequence diagrams. The new 
sequence diagram will comprise of the sequence of common messages 
identified and these messages are going to be eliminated from each of the 
sequence diagrams they belong to, thus obtaining disjoint sequence diagrams.  

 
It is important that the messages are consecutive; only if they represent a 

continuous sequence we can say that overlapping exists and only then it is 
justified to separate them into a new sequence diagram. 

Our purpose is to obtain disjoint sequence diagrams, i.e. individual, 
distinct sequence diagrams. 

 
Definition 5 
Two sequence diagrams are considered disjoint if they have a maximum 
number of N-1 consecutive common messages. 
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We must set up a minimal limit N of number of common messages that 
are going to be separated into a new sequence diagram. This is necessary 
because on one hand it is too expensive and on the other hand it is not useful to 
separate a too small number of common messages into a new sequence 
diagram. Our experience with removing overlapping in sequence diagrams 
shows that, for practical purposes, a reasonable minimal limit can be set to 5 
common messages. Below this number, any sequence of common messages 
can be ignored. 

 
Rule 2 
The process of eliminating overlapping will end when among all the refined 
sequence diagrams no sequence of N consecutive common messages can be 
found between any two different sequence diagrams. 
 

Summarizing, the normalization (performed by removing the 
overlapping), is performed by identifying sets of minimum N consecutive 
common messages in the scenario matrices, separating them, and creating a 
new sequence diagram from each such common set.  

This normalization entails the increase of the number of sequence 
diagrams than initially existent. However, this brings with it the benefit of 
“disjoint” (non-overlapping) sequence diagrams. This offers a clearer overview 
of them and, as we will see later in this chapter, a better overview of the 
relationships existing between them. 

After eliminating the overlapping, we are going to modify the existing 
scenario matrices and create new ones for the new sequence diagrams, so that 
each sequence diagram will have its own complete scenario matrix. 

 
As an example, let us consider the same ATM system and two scenarios 

represented as sequence diagrams for the use case “Transaction” appearing in 
Fig. 3.1. The first scenario is the one where the user performs a withdrawal and 
the second one is the scenario where the user performs a deposit. The two 
sequence diagrams appear in Fig. 3.7.  

We notice that both scenarios suppose an initial set of operations where 
the card is validated with the bank and consortium of banks. 
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User ATM

Enter password

Insert card

Verify account

Display main screen

Verify card with bank

OK bank account

Request password

Display options menu

OK account

Consortium Bank

Eject card

Request take cash/card

Display main screen

Take cash/card

Request deposit

Request insert cash

Insert cash

Display balance

 

Fig. 3.7 Two sequence diagrams for withdrawal and deposit  
in an ATM system 
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Fig. 3.8 New normalized sequence diagram 

 
More specifically, both sequence diagrams contain a series of 9 

consecutive common messages (starting with Display main screen and ending 
with Display options menu). This is the overlapping that we are going to 
eliminate. We will separate the common messages into a new sequence 
diagram, appearing in Fig. 3.8. The other two sequence diagrams appear in Fig. 
3.9. From the original two sequence diagrams we have obtained three 
normalized sequence diagrams. 

 

   
Fig. 3.9 Normalized sequence diagrams 
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3.4 Importance of relationships between scenarios 
 

One scenario represents only one particular “story” of the use of a 
system. For the complete description of the requirements specification, a 
number of scenarios are needed. These scenarios are not independent of each 
other, but several relationships and dependencies interconnect them.  

For example, if we consider the same example of an ATM system, and 
two scenarios, one for creating a card with a bank, and another one for using 
the card for ATM operations, it is obvious that the scenario of creating the card 
must precede the one of performing ATM operations. The other way around 
would not be possible. This shows that the two scenarios must follow a strict 
order, there is a strict and clear relationship between them which cannot be 
ignored. 

Sequence diagrams, as representation of scenarios, show the objects and 
the way they communicate with each other. During the design phase, the 
behavior of the object must appear clear, unambiguous. The same object can be 
involved - and most often it is - in several sequence diagrams. Let us imagine, 
for instance, that we have two scenarios and two different situations: one in 
which it is required that the two scenarios are concurrent and the other one in 
which the two scenarios are consecutive. Naturally, the two situations are 
entirely different and the overall behavior of the objects involved should be 
clearly different in the two cases.  

Different relationships between the scenarios where the object appears 
result in different overall behaviors of the respective object. It is therefore 
essential to know the correct relationship between scenarios, the one that 
reflects the requirements of the system. This is what determines us to 
emphasize that the relationships between scenarios should be taken into 
account and should be given a proper representation.  
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3.5 Classification of relationships between scenarios 
 
Depending on the application, the number of scenarios varies; however 

small the number of all possible scenarios, relationships and dependencies exist 
between them. These relationships between scenarios can be of various natures. 

Several scenarios can be related with respect to their goals [19]. For 
instance, in an extensive ATM system, one such goal would be “fulfill the 
requirements to be able to perform bank transactions”. These requirements 
could be fulfilled in scenarios like “Apply for a cash card”, “Verify user’s 
personal information”, “Create and send the cash card to the user” etc. The 
above scenarios are therefore related because they share the same goal. 

Scenarios can also be considered to be related in terms of the resources 
they use. For example, we can look at scenarios “Verify user’s previous 
financial dealings with the bank” and “Verify user’s credit history“ as making 
use of the same resources, that is the bank files, along with other resources 
obtained through collaboration between banks.  

Based on the criteria above, the related scenarios do not necessarily have 
to be equivalent, that is they can be related not only as having “the same” goals 
or “the same” resources, but also “complementary” goals or resources or 
“opposite” goals or resources.  

Several other criteria can be imagined that allow a categorization of the 
relationships between scenarios (the use cases they belong to, the actors that 
are involved etc.). Our interest with the scenarios lies in their use during the 
design phase of the software development process, more specifically in the 
dynamic aspects that they can reveal. We want to know the behavior of the 
objects involved in the scenarios, and thus our intention is to emphasize the 
various dependencies and relationships that would lead us to different object 
behavior. Consequently, we are interested in a classification of the 
relationships between scenarios from the point of view of their influence on the 
overall behavior of each object involved.  

One object is usually involved in more than one scenario. By definition, 
dynamic aspects involve a change “over time”. This change refers not only to 
the behavior inside one scenario, but also to the overall behavior in all the 
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scenarios involved. Therefore, we have to know exactly how scenarios relate to 
each other in time, and this translates into the execution order of scenarios. 

 
After careful analysis, we have come up with the following categories of 

dependencies from the point of view of scenario execution order: 
 

• succession (one scenario follows another one); 
• disjunction (at a certain moment in time only one of the 

scenarios involved is executed); 
• conjunction (the scenarios are executed simultaneously); 
• repetition (the scenario is executed repeatedly).  

 
a) Two scenarios are said to have a succession dependency if all the 

messages in the preceding scenario must be sent/received before 
all the messages in the following scenario.  

For example, the scenario of creating a card with the bank must precede 
the scenario of performing a transaction with the bank (any transaction 
involves the use of a card). 
 
b) Two scenarios are said to have a disjunction dependency if either 

all messages in one scenario or all messages in the other scenario 
are sent/received. This establishes an OR type of relationships 
between the two scenarios and therefore between the two respective 
sets of messages belonging to the scenarios. 

When the user approaches an ATM, after his/her card is verified with the 
bank, he can choose to perform either one of the following transactions: 
withdrawal, deposit, transfer or inquiry. Only one of these is possible at a 
certain moment in time. 
 
c) Two scenarios are said to have a conjunction dependency if their 

respective sets of messages are sent/received simultaneously (we 
do not know how the process happens in terms of individual 
messages, and this is not relevant; we do not know if the exchange of 
messages in the two scenarios terminates at the same time, but, with 
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respect to how we define “conjunction”, the exchange of messages 
starts at the same time). This establishes an AND type of relationship 
between the two scenarios. 

In most ATM systems, all transactions with the ATM are monitored. 
This means that the monitoring scenario happens simultaneously with 
the transaction scenario. 
 
d) A scenario is repeated if the set of messages that are part of it are 

sent/received repeatedly, according to the conditions that impose 
the repetition). This is done either a certain number of times, or 
until/while a certain condition is fulfilled. 

After inserting the card into the ATM machine, the user can introduce an 
invalid PIN a number of maximum 3 times. The scenario of introducing 
an invalid PIN repeats itself either until the PIN is correct, or until this is 
done 3 times. After this, in case his PIN is still not correct, his card is 
withheld by the machine.  
 
We say that succession, disjunction and conjunction are dual 

relationships, because they involve the existence of at least two scenarios, as 
opposed to repetition, which refers to a single scenario, and which we call 
single relationship. 

We must also take into consideration the situation where a scenario is not 
related in any way to the other scenarios. This implies that it can occur any 
time, regardless of the execution time of the others. We call such a scenario an 
independent scenario.  

A scenario is independent of the other scenarios if no relationship can be 
established between the timing of sending/receiving of its set of messages and 
the sending/receiving of the other scenarios’ sets of messages. 

For instance, relating to our ATM example, one such independent 
scenario could be the one updating the ATM software, “Scenario update 
software”. This is a scenario that can practically occur at any time. It only 
depends on the decision of consortium of banks that controls the banking 
activity to update the software; it does not depend on the other possible 
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scenarios of dealing with the ATM system. A representation of this scenario 
appears in the sequence diagram in Fig. 3.10. 

 
Summarizing, because we are interested in the effect of the relationships 

and dependencies between scenarios from the point of view of their influence 
on the behavior of the objects involved, we will consider the following types of 
dependencies, which, as stated above, can be one of the following: succession, 
disjunction, conjunction and repetition.  

 

 
Fig. 3.10 Sequence diagram for “Scenario update software” 

 

3.6 Dependency diagrams 
 
In order to be able to represent and make use of the relationships existing 

between various scenarios, we have introduced a new type of diagrams called 
dependency diagrams. The notation used in these diagrams is based on the 
notation used in Message Sequence Charts [14] and it is illustrated in Fig. 3.11, 
while Fig. 3.12 shows a general dependency diagram. 
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Scenario name

Scenario Connection node

Start point End point

Start concurrency Synchronized 
concurrency

 

 

Fig. 3.11 Basic notation in dependency diagrams 

 
 

Definition 6 
A dependency diagram is a directed graph where nodes are scenarios and 
edges represent the way they are interconnected. If we consider Sci and Scj two 
nodes in a dependency diagram, the edge connecting these two nodes 
represents (Sci R Scj), where R denotes the relationship between Sci and Scj.  
 
     The relationship R, as defined earlier, can be one of the following: 

• sequence, denoted with “;” 
• disjunction, denoted with “∨” 
• conjunction, denoted with “∧” 
• repetition, denoted with “*” 
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Scenario 2 Scenario 3 Scenario 4

Scenario 1

Scenario 5 Scenario 6

Scenario 7

Scenario 8
Cond

Succession (;)

Disjunction (∨)

Conjunction (∧)

Repetition (*)

 
 

Fig. 3.12 General dependency diagrams 

 
In Fig. 3.12, Scenario 1 is succeeded by all the other scenarios. Scenario 

2, Scenario 3 and Scenario 4 are related by disjunction, while Scenario 5 and 
Scenario 6 are related by conjunction. Scenario 8 is repeated according to the 
condition cond appearing on top of the self-message. 

 
A specific example of a dependency diagram is shown in Fig. 3.13. It is 

based on the same classical example of an ATM system. (We consider 
Scenario_start as the initial scenario.) The user approaches the ATM, inserts 
the card, the card is validated and the main options screen is displayed. From 
this point, the user can select any of the three operations of withdrawing cash, 
depositing cash or transferring cash, that is either Scenario_withdraw or 
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Scenario_deposit or Scenario_transfer respectively. We also suppose that 
when the user changes his (her) password (Scenario_chg_pass.), the scenario 
Scenario_videotape takes place simultaneously, that is, the user is being 
videotaped during the operation of changing the password. (Although this is a 
simplified version of an ATM system, it facilitates the illustration of the points 
we intend to make). 

 

Scenario_withdraw Scenario_deposit Scenario_transfer

Scenario_start

Scenario chg_pass. Scenario_videotape

 
Fig. 3.13 Dependency diagram for an ATM system 

 
Fig. 3.13 exemplifies succession (Scenario_start precedes the other 

ones), the disjunction of three scenarios, Scenario_withdraw, Scenario_deposit 
and Scenario_transfer (any of them can be executed after Scenario_start), as 
well as the conjunction of two scenarios, Scenario_chg_ pass. and 
Scenario_videotape. The above dependency diagram can be written as in the 
following (we call this textual format a “dependency formula”): 

 
Scenario_start  ; (Scenario_withdraw ∨  Scenario_deposit ∨ 
Scenario_transfer) ; (Scenario_chg_ pass. ∧ Scenario_videotape) 
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3.7 Benefits of representing relationships between 
scenarios 
 
Through the introduction of dependency diagrams as a means to 

represent relationships between various scenarios, we can benefit from several 
advantages in the process of requirements analysis and throughout the whole 
development process of the system. First of all, by knowing the dependencies 
that exist between scenarios, we can create state machines that show the 
complete behavior, rigorously according to the information in the scenarios. 
This is going to appear more clearly in the following chapter, where we will 
follow exactly the role of the dependency diagrams in the creation of state 
machine diagrams.  

By representing the relationships between various scenarios, we can 
easily tell what other scenarios would be affected if one scenario were changed. 
This contributes considerably to the enhancement of traceability. Also, we 
beneficiate of an improved readability; by seeing how the different scenarios 
are related to each other, we can have a better overview of the requirements of 
the system.  

Last, but not least, dependency diagrams could be used in the process of 
generating test cases; by carefully representing all the possible relationships in 
the dependency diagrams, we can generate a multitude of test cases by 
traversing various paths in these diagrams (in the same way as we create 
traversal paths in any graph, in general). We can easily test unwanted behavior 
in the dependency diagrams. For instance, if two scenarios are related with a 
sequence kind of relationship, we can try to execute the succeeding scenario 
first and the preceding scenario afterwards.  

As expected, when dealing with large and complex dependency diagrams, 
we will have a large number of paths that we can traverse and therefore test. 
This will make the task of the tester more tedious, but it will increase the 
chances of discovering inconsistencies and errors in the system. As Dijkstra 
famously stated more than 30 years ago, “Program testing can be used to show 
the presence of bugs, but never to show their absence” [23]. We might not be 
able to find the errors only on the basis of testing, but, nevertheless, by 
providing the opportunity to derive numerous test cases, we could narrow 
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down the number of possible inconsistencies and errors in the intended system. 
An extended description of using depending diagrams in the testing process 
constitutes a part of our future work. 

 

3.8 Number of dependency diagrams 
 

Ideally, we should have one dependency diagram for a system; this 
would help in creating a state machine that include the entire behavior 
throughout the system. Naturally, this dependency diagram is quite possibly 
very large, since it must include all scenarios. However, this is not always easy 
to put into practice. 

Firstly, we might (and quite often we do) have a number of independent 
scenarios. These scenarios are not dependent on the other scenarios and 
therefore we cannot integrate them easily in the dependency diagram. Being 
independent actually means that the respective scenario can occur at any time. 
From the point of view of the dependency diagram, an independent scenario 
could in theory appear anywhere in it (in the very beginning, in the end, 
concurrent with other scenarios etc.). One solution would be to include one 
instance of it as an alternative scenario next to each of the other scenarios in 
the system (obtaining this way a multitude of ORs), but for a system including 
many scenarios, this would clutter the dependency diagram. Another solution 
would be not to integrate this scenario in the dependency diagram, and obtain a 
separate state machine for it. 

Secondly, some groups of scenarios, although related to one another, 
might not be related to another group of scenarios; therefore, it might be more 
practical to have one dependency diagram for each such group. 

These considerations might lead us to being forced to construct not one, 
but two or more dependency diagrams. We would have several dependency 
diagrams that comprise of several scenarios interrelated. This would show how 
the scenarios depend on each other and would help in obtaining final state 
machines for each object. Since one final state machine corresponds to one 
dependency diagram, more than one dependency diagram would result into 
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more that one “final” state machine diagram. This is not the ideal case; 
however, our purpose is to obtain state machines showing the complete 
behavior of the respective objects. Since we cannot achieve this using only one 
such diagram, we would obtain in the end as many state machine diagrams as 
dependency diagrams. 

 

3.9 Scenarios involved in more than one relationship 
 
In practice, it is sometimes possible that a certain scenario is related to 

two (or more) other scenarios in two different ways. In order to keep the 
atomic nature of each relationship, we will consider the scenarios involved in 
more than one relationship as many times as necessary. 

The scenario will keep the same name, but it will appear twice (or as 
many times needed) in the dependency diagrams, as we have illustrated in Fig. 
3.14. 

In our example, scenario S3 appears in two different relationships: R1 
with scenario S2 and R2 with scenario S5; we have therefore considered it 
twice in our dependency diagram. (The relationships between the other objects 
are not of interest here; we have denoted them generally with a simple R). 

We believe that the benefits of showing each relationship and therefore, 
possibly, including certain scenarios several times, outweigh the burden of 
increased complexity (and implicitly increased size) of the dependency 
diagrams. We can have a clear view of the whole system, of all the scenarios in 
the system, and we persist in our purpose of emphasizing the dependencies that 
exist between all scenarios in the system. 
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Fig. 3.14 One scenario involved in two different relationships 

 

3.10  Related work 
 
In [11], Ryser and Glinz have introduced a new kind of chart, 

dependency chart to model the dependencies between scenarios. This chart is 
mainly used for systematical testing of the requirements. The classification of 
the possible dependencies given in [11] is the following: abstraction, temporal 
and causal. Scenarios arranged in hierarchies and scenarios to cover variants 
(e.g. the same scenario with various slight differences is true for a system 
depending on hardware configuration) establish abstraction dependencies. 
Temporal dependencies establish a sequence dependency between scenarios. If 
one scenario may only be executed under certain conditions and another 
scenario establishes these conditions, then the two are related by a causal 
dependency.  

The abstraction relationship is not significant in our purpose of 
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emphasizing relationships that lead to different behavior of the objects 
involved. As for the causal relationship, from our point of view, it can be 
reduced to a succession dependency (as defined in section 3.5). The scenario 
where the condition has to be fulfilled must precede the scenario that is 
depending on the condition.  

The dependency chart introduced by Ryser and Glinz is mainly used for 
systematical testing of the requirements.  

 
Breitman and Leite have given a different classification of scenarios 

relationships in [29], used in the scenario construction process. The 
relationships were related to the incidence of some scenario components, like 
goal, context, resources, episodes, actors. Depending on these, several scenario 
relationships have been defined: complement, equivalence, subset, precondition, 
detour, exception, include and possible precedence.  

This classification, as well, does not serve our purpose of identifying the 
overall behavior of objects based on how the scenarios are related to each other. 
The relationships defined in [29] are used in a scenario evolution process 
proposed by the authors. 
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Chapter 4  
 

Transforming Sequence Diagrams 
into State Machine Diagrams 

 
 

4.1 State machine diagrams in UML 
 
Sequence diagrams (as representation of scenarios) are not only capable 

to capture requirements, but they can also be used in conjunction with other 
models, especially behavior models. State machines (particularly statecharts, 
originally introduced by Harel [4]), represent a compact and elegant way of 
describing behavior. They can be used not only for behavioral requirements 
specifications, but also for detailed design models close to implementation [5]. 

 
The formalism used in UML for representing state machines is inspired 

from Harel’s statecharts [4]. A state machine diagram, as it is called in UML, 
models the behavior of a single object, specifying the sequence of events that 
an object goes through during its life cycle in response to events [43].  

 
The basic notation used in a state machine diagram is summarized in Table 4.1 
[38], while a simple example of a state machine diagram can be found in Fig. 
4.1.   
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Table 4.1. State machine diagram basic notation 

 

State 
The State notation marks a mode of the entity, 
and is indicated using a rectangle with rounded 
corners, and the state name written inside. 

Transition 

A Transition marks the changing of the object 
State, caused by an event. The notation for a 
Transition is an arrow, with the Event Name 
written above, below, or alongside the arrow. 

Initial 
State 

The Initial State is the state of an object before 
any transitions. For objects, this could be the 
state when instantiated. The Initial State is 
marked using a solid circle. Only one initial 
state is allowed on a diagram. 

 

Final State 

End States mark the destruction of the object 
whose state we are modeling. These states are 
drawn using a solid circle with a surrounding 
circle. 

 

 

 

Fig. 4.1 Example of a state machine diagram 

 
State machine diagrams have proved to be useful in the dynamic 

description of the behavior of a system. Together with class diagrams, they can 
express the design model of the system and they can be used for code 
generation, since each of them describes the complete behavior of one object. 
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4.2 Combining sequence diagrams and state machine 
diagrams 

 
Sequence diagrams and state machine diagrams each present benefits on 

their own, especially when it comes to illustrating behavioral aspects of a 
system. Using them together augments their benefits; they are able to 
complement each other in many ways. While a sequence diagram represents a 
single trace of behavior of a complete set of objects, a state machine diagram 
represents the complete behavior of a single object. The two concepts together 
provide an orthogonal view of a system.  

A state machine shows the behavior of one object; however, it is not 
always easy to construct a state machine. The information contained in 
sequence diagrams (as representations of scenarios) can be used for obtaining 
state machines that depict the specified behavior. 

The information regarding the requirements is part of the scenario 
information. By transforming scenarios (more specifically, sequence diagrams 
representing scenarios) into state machines, we respect the requirements and 
we can also understand the behavior of each object. The information in the 
state machines (together with the class diagrams) can be used during detailed 
design; moreover, code can be generated from the state machines. Thus the use 
of both sequence diagrams and state machines supports a considerable part of 
the software development process, that is the requirements analysis, design and 
the implementation. As our main interest lies in the design phase, particularly 
in the dynamic modeling, both sequence diagrams (as representation of 
scenarios) and state machine diagrams are extremely useful.  

 
4.3 Transformation process of sequence diagrams into 

state machine diagrams 
 
In order to make use of the benefits of both scenarios and state machines, 

we propose a process of transformation of sequence diagrams (as 
representations of scenarios) into state machines, based on the information in 
the dependency diagrams.  



35 

Our analysis shows that different relationships between scenarios result 
in different state machine structures. Since state machines will further be used 
during design or for the implementation phase, we must obtain the state 
machine structures that reflect accurately the behavioral information contained 
in the scenarios. This can only be done if we know exactly how the scenarios 
are related to each other and it is the dependency diagrams that are capable of 
depicting these relationships. Therefore, it would not be possible to create state 
machine diagrams that accurately reflect the behavior of the objects involved in 
scenarios if we did not consider the information in the dependency diagrams, 
that is if we did not know how these scenarios are related. Consequently, in our 
process of transformation of sequence diagrams into state machine diagrams, 
we will rely extensively on the dependency diagrams. 

 
Given a number of scenarios (obtained in the requirements specification 

phase of developing a system), our goal is to emphasize all the relationships 
existing between these scenarios and then use them in the transformation 
process of the sequence diagrams (as representation of scenarios) into state 
machine diagrams. 

 
 
The process of transformation of sequence diagrams into state machine 

diagrams involves three major phases, as follows:  
 

Phase I - Identification and representation as sequence diagrams of all single 
scenarios (called initial scenarios) and normalization of the sequence diagrams; 

 
Phase II - Identification and representation (as dependency diagrams) of the 
relationships between all scenarios; 
 
Phase III - Synthesis of the state machine diagrams (one for each object), 
based on the information acquired in the previous two phases. 
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Phase III involves the following two steps, for each object in the system: 
 

III.1. Creation of initial state machine diagrams, one diagram corresponding to 
each scenario where the object appears; 

III.2. Creation of the final state machine diagram by combining all the initial 
state machine diagrams, based on the information in the dependency 
diagrams. 
 
The result of the transformation process will be a number of state 

machine diagrams equal to the total number of objects appearing in the 
scenarios. An overview of the process is illustrated in Fig. 4.2. We will 
describe each phase in detail in the following. 

 
 

 
 

Fig. 4.2 Overview of the transformation process 
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4.3.1. Phase I: Identification and representation as sequence 
diagrams of all single scenarios and normalization of the sequence 
diagrams. 

 
During this first phase, we create what we call “initial” scenarios, by 

writing down all the possible scenarios of using the system. These scenarios 
are represented as UML sequence diagrams. For each sequence diagram, we 
will have a corresponding scenario matrix.  

In case overlapping between scenarios exist, as we have shown in section 
3.3, the initial sequence diagrams have to be normalized. This is done in 
preparation for phase II, where the dependencies between disjoint, 
non-overlapping scenarios are going to be illustrated. If we consider Ninitial the 
number of initial scenarios, after the normalization we will have N scenarios, 
where N ≥ Ninitial (N and Ninitial are equal only in case there was no overlapping 
between scenarios and therefore no newly created scenarios). 

 
Result of phase I: a number of N scenarios (N normalized sequence 

diagrams and an equal number N of scenario matrices). 
 
 

4.3.2. Phase II: Identification and representation (as dependency 
diagrams) of the relationships between all scenarios. 

 
During this phase, we will show the relationships between scenarios by 

creating dependency diagrams. As noted in section 3.6, the related scenarios 
will be the nodes in the dependency diagram, while their relationship will be 
the edges. At this stage we need to identify all the possible relationships that 
exist between the given scenarios. 

 
When we identify the relationships, it is important that they do not 

involve a “subpart” relationship.  
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Definition 7 
A subpart type of relationship denotes the fact that a relationship exists 
between a subpart of one scenario and a subpart of another scenario.  
 

For example, let us consider an abstract representation such as the one in 
Fig 4.3a, with two initial scenarios A and B, and let us consider that when we 
try to identify the relationships between various scenarios in our system, we 
discover that a relationship exists between a subpart of scenario A and a 
subpart of scenario B (R denotes this relationship, which can be any of the dual 
relationships described in section 3.5). This is not desirable in our methodology, 
because we need clear relationships that show exactly how individual scenarios, 
not subparts of scenarios, are related.  

 
 

 
 

a)            b) 

Fig. 4.3 Abstract representation of a subpart type of relationship 
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In case of such a subpart type of relationship, each of the involved 

scenarios is going to be divided into two parts, such that the relationship 
appears clearly as relating two individual scenarios. We will thus divide 
scenario A into scenarios A1 and A2, and we will divide scenario B into 
scenarios B1 and B2, as in Figb. We will have 4 scenarios instead of the two 
original ones, with relationship R existing between A2 and B1. We must keep 
in mind that A1 precedes A2 and B1 precedes B2; this preserves the original 
behavior existing inside scenarios A and B.  

We will break the scenario matrices of each scenario into two parts, 
corresponding to the newly created scenarios, and thus obtain 4 new scenario 
matrices, one for each newly created scenario. This is a straightforward 
operation. By making no modifications to the message tuples and to their order 
in the newly created matrices, we are making sure that the behavior of the 
original scenarios is preserved after the division into two new scenarios. 

In case the relationship R represents disjunction or conjunction between 
A2 and B1, the dependency diagram illustrating their relationship appears in 
Fig. 4.4b. This can be expressed as: (A1 ; (A2 R B1) ; B2), that is A1 precedes 
(A2 R B1), which is then followed by B2. (R is either ∨ or ∧). 

 
In case R represents a succession relationship, we will have the overall 

dependency being: (A1 ; A2 ; B1 ; B2). This appears in Fig. 4.4a. It is arguable 
that, in case we have a succession relationship between A2 and B1, there is 
actually no practical reason to divide the scenarios A and B into the above two 
parts. (A1 ; A2 ; B1 ; B2) is equivalent to (A ; B). 

 
It is also possible to find out that a subpart of a scenario (not the whole 

scenario) involves a repetition. In this case we will separate this part and 
illustrate the fact that it is repeated, as in Fig. 4.5. 
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A1

A2

B1

B2

(A2 R  B1)

(A2 ; B1)

(A1 ; A2 ; B1 ; B2)

A1

A2 B1

B2

(A2  B1)
or

(A2  B1)

(A1 ; (A2 R  B1) ; B2)

R  succession R  disjunction or conjunction

(A2 R  B1)

 

a)    b) 

Fig. 4.4 Subpart relationships:  
succession, disjunction, conjunction 

 
 

The process of creating dependency diagrams can thus be described as follows: 
  

a. Identify dependency between scenarios  
b. While a subpart relationship exists between scenarios  

b1. Partition the involved scenarios (break them down into two or 
more new scenarios) 
b2. Identify another dependency  

c. Finish the creation of dependency diagrams.  
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A1

A2

(*A2)

(*A2)

(A1 ; (*A2))

R repetition

 

 

Fig. 4.5 Supbart relationship: repetition 

 
It is important to emphasize that while eliminating subpart relationships 

we must preserve the behavior of the initial scenarios. The initial scenarios are 
those that reflect the requirements of the system and it is crucial that we do not 
alter these requirements.  

 
By eliminating subpart relationships (in case there are any), the number 

of the scenarios resulting from phase I has increased. We will therefore have a 
new number of scenarios, N`, where N` ≥ N (the two numbers are equal only in 
case there was no “subpart” relationship involved and therefore no newly 
created scenarios). 

 
Result of phase 2: a number N` ≥ N of normalized sequence diagrams (along 
with an equal number of scenario matrices) and a number Dd of dependency 
diagrams. 
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4.3.3 Phase III: Synthesis of the state machine diagrams 
 
The following description applies in the same way for each object 

appearing in the set of given scenarios.  
 

a) Phase III.1. Creation of initial state machines 
 
For a given object, we will first identify all the scenarios where the 

object appears. For each of these scenarios, we will create one state machine 
diagram; these diagrams are called “initial” state machine diagrams. Therefore, 
for one object, we will have a number of initial state machine diagrams equal 
to the number of scenarios where that object appears. (Scenarios being 
represented as sequence diagrams, once again we are using the terms 
“scenarios” and “sequence diagram” interchangeably.) 
 
Sequentially, we have to do the following: 
• create empty state machine diagrams, one for each sequence diagram 

where the object appears; 
• for each of these state diagrams, do the following, extracting information 

from each sequence diagram, one by one: 
 for all transitions to the object, create events; 
 for all transitions from the object, there will be actions that will lead 

to states: create the respective states; 
 set the right time sequence for the transitions. 
 
For the sake of simplicity, we are not going to include the actions, but 

only the states that they lead to. 
 
Messages in sequence diagrams can have guards attached to them. We 

have decided that these guards are going to appear together with the event; 
therefore they will appear only for the receiving object. In case there is a guard 
attached to an outgoing message from an object, it will be considered when 
creating the state machine for the object that receives this message. Fig. 4.6 
shows how this is done on a simple example. Fig. 4.6a shows a sequence 
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diagram with objects O1 and O2, and with messages Msg 1 and Msg 2, each 
having attached the guards guard 1 and guard 2 respectively. As a result, in the 
state machine for object O1, [guard2] will be attached to the event resulting 
from Msg2 (named E_Msg2) while Msg1 will lead to a state (S_Msg1). In the 
state machine for object O2, [guard1] will be attached to the event resulting 
from Msg1 (named E_Msg1), while Msg2 will lead to a state (S_Msg2). The 
state machine illustrating the above appears in Fig. 4.6b. 

 

O1 O2
S_Msg1

S_Msg2

E_Msg2
[guard 2]

E_Msg1
[guard 1]

[guard 1] Msg1

[guard 2] Msg2

object O1 object O2

 
a)     b) 

Fig. 4.6 Guards from sequence diagrams to state machine diagrams 

 
In the following, we describe the algorithm for creating initial state 

machine diagrams. The same algorithm applies to each object that we want to 
create a state machine for. We should note that a default state should be created 
as being the state in which the object is before it receives any event.  

 
For object Ox, the algorithm appears in Fig. 4.7. The actual output of the 

algorithm, for object Ox, is a number of ordered lists SxMl, with l = 
1,…,NxSMinitial, that represent the initial state machines for object Ox (this 
means that Ox appears in NxSMinitial scenarios). 

 
Result of phase III.1: For each object Oi, a number NiSMinitial of state machine 
diagrams (equal to the number of scenarios where object Oi appears) 
(NiSMinitial ≤ N`). 
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Fig. 4.7 Algorithm for creating initial state machines for object Ox 

Input: a set of N scenario matrices, each representing a scenario (sequence 
diagram) 
Output: a set of NxSMinitial state machines (equal to the number of scenarios 
where Ox appears) 
 
1. c=0 (c counts the scenarios where Ox appears) 
2. For s=1 to N: 

3. find out if Ox appears in the scenario Scs, that is search in the scenario 
matrix of Scs: check in all tuples (Mijk, N, W, [G]) if i=x or j=x;  if at 
least one such tuple is found, it means we found a scenario containing 
Ox and we DO: 

4. c=c+1 
5. create empty state machine 

5.1. create empty list of states&transitions (SxMc) 
5.2. sc=0 (sc shows position of states/transitions in the ordered 

list)  
5.3. create empty list of states for SxMc (SxLSc) 

5.4. create empty list of transitions for SxMc (SxLc) 

6. find the tuples in which Ox appears; for each tuple (Mijk, N, W, 
[G]) in the scenario matrix of Scs DO: 

6.1. if x=i, add one state to the state machine’s list of states 
(SxLSc): 

6.1.1. sc=sc+1 
6.1.2. add element (state, Nijk, sc) to the list (SxLSc) 

6.2. if x=j, add one transition to the list of transitions (SxLTc): 
6.2.1. sc=sc+1 
6.2.2. add element (trans, Nijk, [G], sc) to the list (SxLTc) 

7. set the right time sequence of states and transitions – obtain a list 
SxMc of states and transitions, by combining the two lists SxLSc and 
SxLTc into one list (SxMc), ordering the elements by the value of sc 

End 
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b) Phase III.2. Creation of final state machines 
 

Based on the information in the initial state machines and the 
information in the dependency diagrams, we will create the final state machine 
diagram for the object. This involves the merging of the initial state machine 
diagrams, according to the relationship between the scenarios that constituted 
the origin of the initial state machines.  

Based on the classification of relationships between scenarios, there are 
several rules that need to be followed. 

 
Rule 1 
If two scenarios where a particular object appears are related with a sequence 
kind of dependency, then the two corresponding state machines (for the 
considered object) will follow one another. The state machine corresponding to 
the scenario that has to be executed first will precede the one corresponding to 
the succeeding scenario.  

 
Rule 2 
The state machines corresponding to two scenarios related by disjunction are 
going to be unified into one single state machine. 
If the initial state machines have common transitions or common states, they 
will be taken only once in the final state machine. 

 
Rule 3 
If two scenarios are related with a conjunction dependency, the initial state 
machines corresponding to the considered object involved in them will be 
combined with AND type substates.  

 
Rule 4 
If a scenario is repeated, the same repetition can be shown in the state machine 
of the object we consider. This is indicated in the form of a transition from the 
terminal state to the initial state of the state machine. The condition imposing 
the repetition is specified on a label situated on top of the arrow depicting the 
transition. 
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When combining the initial state machines, the default states in them will 
represent a single default state in the final state machine. 

 
Result of phase III.2:  

- For each object, one final state machine diagram;  
- In total, a number of final state machine diagrams equal to the total 

number of objects from all scenarios. 

 

4.4 Applications of the obtained state machine diagrams 
 
The transformation of sequence diagrams into state machine diagrams, as 

a transformation between two different UML models, gives a better view of the 
system. The obtained state machine diagrams can be used not only for detailed 
design, but also during the implementation phase. They offer a dynamic view 
of the system, whereas a static view can be found in the class diagram of the 
system. Attached to this class diagram, the state machine diagrams can express 
the design model of the system and can facilitate the code generation. This way 
the developer is brought one step closer to the final phases of developing the 
system.  

Several tools and research papers that deal with generating code from 
state machine diagrams exist (e.g. [21], [22]). By obtaining the state machines 
for all the objects in the system, we offer the developer more behavioral 
information to help him/her during the implementation phase.  

 
4.5 Comparison: case with dependencies versus case 

without dependencies 
 
In the following, we are going to make a comparison between a state 

machine diagram obtained with dependencies and one obtained without 
dependencies. As a specific example, let us consider a simple CD Player with a 
remote control device. We suppose that the objects involved here are Device 
(that is the remote control device) and Controller, which actually implements 
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the behavior of the CD Player when the buttons on the device are pressed. 
Whenever a button is pressed, the Device informs the Controller, which in 
response performs some action and changes the state of the player [7]. 

Let us consider the following two scenarios (represented as sequence 
diagrams and appearing in Fig. 4.8), called Speaker and Player and afterwards 
let us focus on the object Controller and try to offer a complete behavior for it; 
we can do this by creating the state machine diagram that corresponds to it. 

Fig. 4.8 Two scenarios, Speaker and Player 
 

According to the algorithm we described previously, for object 
Controller, we would obtain the state machine diagrams in Fig. 4.9.  a) 
corresponds to scenario Speaker, while b) corresponds to scenario Player. Each 
of these state machines shows the behavior of object Controller in two different 
cases. In these cases we do not consider that the two given scenarios are 
dependent on one another. 

If we want to know the behavior of this object as a whole, we should 
consider the relationship between the two scenarios. First, let us imagine that 
the two scenarios follow one another, that is the Speaker scenario occurs first 
and the Player scenario occurs afterwards. Second, let us imagine that the two 
scenarios are concurrent. If the two scenarios follow one another (we have a 
succession dependency), we obtain the state machine diagram in Fig. 4.10. If 
the two scenarios are concurrent (we have a conjunction dependency), the 
resulting state machine diagram appears in Fig. 4.11. 
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a)                 b) 

Fig. 4.9 State machine diagrams for scenarios Speaker and Player 

 
 

 
Fig. 4.10 State machine diagram for Controller in case of succession 
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stopbt 

playbt 

Play

Stop

speakerbt 

speakerbt 

speakerbt 

LeftSpk

RightSpk

BothSpk

 
 

Fig. 4.11 State machine diagram for Controller in case of conjunction 

 
 

We can notice that there is an important difference between the behavior 
of the object in the two separate state machine diagrams in Fig. 4.9 and the two 
state machine diagrams, showing the overall behavior of object Controller, in 
Fig. 4.10 and Fig. 4.11. Furthermore, the behavior of the object differs between 
Fig. 4.10 and Fig. 4.11. Since the state machine diagram should describe the 
behavior of the object (that we can actually use for code generation), it is 
important to decide which of the behaviors is the one that reflects the given 
requirements (in our case, the given scenarios represented as sequence 
diagrams). 

This simple example proves the fact that, in order to be able to have a 
complete behavior description for an object, we need to know how to 
“combine” the individual state machine diagrams obtained. Moreover, because 
different scenario relationships result in different state machine diagrams (and 
thus different behaviors of the objects), it is not enough to know that the 
scenarios are related to each other, but it is important to represent accurately 
their relationship. 
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The above example underlines once more that dependencies between 
scenarios are crucial when we need to know the behavior of objects involved 
in a system. By representing these dependencies in dependency diagrams and 
by using the information in these diagrams, we can ensure that the 
requirements expressed in the given scenarios have been fulfilled and the 
behavior of the objects involved can be illustrated completely and accurately in 
the synthesized state machine diagrams.  

 
4.6 Related work 

 

4.6.1 Obtaining state machine diagrams from single scenarios 

The problem of transforming scenario type models into behavior models 
like state machines has been dealt with in various research papers. The most 
related work can be found in [9] and [7].  

One of the first papers dealing with this problem is [35], where 
Koskimies and Makinen developed an algorithm which converts sequence of 
event trace diagrams into state machines. Event trace diagrams are the 
representation of scenarios in OMT (Object Modeling Technique), and they 
have evolved into UML’s sequence diagrams. The result of their algorithm is 
simple state machines, without state hierarchy and concurrent states. Later, a 
tool called SCED is proposed by Koskimies and others for automatic 
generation of state machines from single scenarios [9]. They apply the 
Biermann and Krishnaswami algorithm (used for synthesizing programs from 
sample executing traces) to the synthesis of state machines. 

In [7], Ali et. al. propose a set of rules of constructing statecharts from 
event trace diagrams; class hierarchy and concurrency are introduced here.  

Similarly, Maier and Zundorf consider single scenarios in [27] and offer 
an algorithm of synthesis of statecharts from sequence diagrams. More recently, 
in [8], an algorithm for generating UML statecharts from sequence diagrams is 
given; merging multiple sequence diagrams is discussed, along with how to 
merge different branches of the resulting state machines, without any regard for 
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the nature of relationships between the sequence diagrams.  
The above research papers deal with transforming scenarios (represented 

either as event trace diagrams or sequence diagrams) into state machine 
structures. However, only single scenarios are considered, their relationship 
and the influence of their relationships on the resulting state machine is not 
taken into consideration.  

 

4.6.2 Others 

Schonberger et al. [10] describe an algorithm for model transformation, 
more precisely an algorithm for transforming collaboration diagrams into state 
diagrams; however, they consider only single collaboration diagrams as input. 
Collaboration diagrams describe the interaction among objects, with the focus 
on space. (Their name has changed since UML 2.0, they are now called 
“communication diagrams”). This means that the links among objects in space 
are of particular interest and explicitly shown in the diagram. Sequence 
diagrams (as representation of scenarios) on the other hand, although they also 
describe how objects interact and communicate with each other, focus on time. 
Although the two kinds of diagrams are similar in their purpose of describing 
dynamic aspects, we favor the use of sequence diagrams in the analysis phase, 
as they allow a representation of the requirements by focusing on the time flow 
in the development of events. 

Systa and Makinen [46] have developed MAS (Minimally Adequate 
Synthesizer), as an interactive algorithm that synthesizes UML state diagrams 
from sequence diagrams. It follows Angluin’s framework of minimally 
adequate teacher to infer the desired state diagram by consulting the user, with 
the help of membership and equivalence queries. The algorithm can conclude 
the correct answer to most of the membership queries without consulting the 
teacher, i.e., the designer. The UML sequence diagrams represent example 
cases that can be treated in any order. 

Whittle and Schumann [8] introduce a method for automatically 
generating UML statecharts from a collection of UML sequence diagrams. 
Since the set of sequence diagrams is usually incomplete, containing 
insufficient and imperfect information, additional information is often needed 
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for synthesizing appropriate statechart diagrams. This additional information 
about the semantics of the messages in the form of pre and post conditions is 
expressed in Object Constraint Language (OCL) and can be added to the 
sequence diagrams to guide the synthesis process. Also, the information 
included in a class diagram can be used to structure a statechart diagram with 
composite states. 

In [26], Some proposes a formalization of use cases, a natural language 
based syntax for use cases description, and an algorithm that incrementally 
composes a set of use cases as a finite state transition machine.  

In [30], Uchitel provides a synthesis algorithm that translates scenarios 
into a behavioral specification in the form of Finite State Processes (FSP). He 
uses Message Sequence Charts (MSCs) as representation of scenarios and 
high-level MSCs (hMSCs), each representing a set of scenarios into a single 
graph. 

 
We can actually observe that there exists much work on introducing 

methods that describe how to specify various models; however, the methods 
described do not sufficiently guide the developer in the task of transforming 
one model type into another. More specifically, although several research 
papers exist that show how to transform scenario type models into behavior 
models like state machines diagrams, they tend to neglect the relationships that 
can exist between various scenarios. As we have shown before, our conviction 
is that these relationships have to be emphasized and taken into consideration, 
since they influence the behavior in the state machine diagrams that can be 
obtained based on the information in the considered scenarios. Only by taking 
into consideration these relationships we can be sure that we obtain the state 
machine diagrams that reflect accurately and entirely the behavior resulting 
from the requirements analysis. 
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Chapter 5 
 
Semiautomatic Synthesis of State 
Machine Diagrams: MUSEDESK 
 
 

5.1. Description of the system 
 

Our approach has been implemented into a system named MUSEDESK 
(“from MUltiple ScEnarios with DEpendencies to State machine diagrams”). 
Given a set of sequence diagrams (that represent scenarios) and a dependency 
diagram (that shows the inter-scenario relationships), MUSEDESK is able to 
generate one state machine for the desired object.  

 
The system has the following input and output: 
 

• Input: a number of sequence diagrams, along with a (number of) 
dependency diagram(s)  

• Output: a state machine diagram 
 
    A number of sequence diagrams are created first; after that, a dependency 
diagram showing all the relationships that exist between them is created. An 
object is then selected and afterwards MUSEDESK synthesizes its state 
machine diagram.  
     Our system first generates the initial state machine diagrams (as 
described in the previous chapter) for a selected object. The combined list of 
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states and transitions is obtained automatically, as well as their order. However, 
the output on the screen is not done automatically. Only simple sequence 
diagrams are supported in the current version, as well as simple state machine 
diagram structures. 
     The final state machine diagram (as defined in section 4.3) is obtained 
based on the information in the given dependency diagram. The meta-list of 
states and transitions is obtained automatically, but the appearance and the 
layout on the state machine diagram pane are set manually. 
 

5.1.1. Overview 
 

Fig. 5.1 shows the overall structure of the MUSEDESK system. 
Conceptually, there are 3 main modules that make the system function: 
Scenario Manager, Transformation Engine and Graphical Editor.  
 
 
a) Scenario Manager 
 

This module receives its name from managing the given scenarios 
(when we say scenarios, we mean their representation as sequence diagrams). 
Here are its main functions: 
 
• It creates the scenario matrices for the given sequence diagrams. As we 

have shown in section 3.2, for each message exchanged between two 
objects, a tuple is created, having the form (Mijk, N, W [,G]) ; the ordered 
set of all tuples represents the scenario matrix. 
 

• Through the process of normalization of the given scenarios, it creates the 
scenario matrices for the normalized scenarios. 
 

• It creates the dependency formula, that is a textual representation of the 
given dependency diagram.  
A dependency formula is given as (S1 R1 S2 R2 … Rn-1 Sn).  
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Fig. 5.1 Overview of MUSEDESK 
 
 
b) Transformation Engine 

 
The transformation engine uses information given by the Scenario 

Manager and creates the state machine diagram. 
 
• It creates the initial state machine diagrams, using the algorithm described 

in section 4.3.3. It first creates a list of states and a list of transitions and 
then, according to their order, a set of combined lists of states and 
transitions: SobjectLS1, SobjectLT1…, …, SobjectLSn, SobjectLSn   
(n represents the number of sequence diagrams where object appears) 
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• It uses the set of combined lists and transitions and the dependency 
formula to create a meta-list of states and transitions. 
  
 

c) Graphical Editor 
 

The graphical editor is the one concerned with the graphical editing of 
each diagram: sequence diagram, dependency diagram and state machine 
diagram.  
 
 

5.1.2. Description of the main window 
 

The main window of MUSEDESK has 3 tabbed panes, one tab for each 
type of diagram: Sequence diagram pane, Dependency diagram pane and State 
machine diagram pane.  

 
a) The Sequence diagram pane allows the creation and editing of 

sequence diagrams.  
This pane creates and processes the typical elements of the sequence 

diagram: objects and messages. One element is created by clicking its 
corresponding button in the toolbar. The location of the element is decided by 
the position of the mouse. In case of a message, it will be created as outgoing 
from the object whose lifeline has been clicked on first and incoming to the 
object whose lifeline has been clicked on second. By right-clicking the selected 
element, an input window is shown, where the name can be written. This name 
will appear inside the rectangle for an object and on the arrow for a message 
(centered on the message).  

This pane contains also typical editing menus, like selecting an element, 
deleting an element and clearing the whole pane. When selecting an element, it 
can be moved or its name can be added/changed. 

Fig. 5.2 shows a snapshot of this pane being active, with Scenario_0 
created in it. In this snapshot, the name of the message exchanged between 
Consortium and Bank is just being inputted.  
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Fig. 5.2 Snapshot of MUSEDESK: sequence diagram 

 
 
b) The Dependency diagram pane allows the creation and editing of the 

dependency diagrams.  
There are two graphical elements here: the nodes, which are the 

scenarios, and the edges, which represent their relationship.  
The toolbar (and the menus) also allow typical editing actions, like 

selecting an element, deleting an element and clearing the whole pane. When 
selecting an element, it can be moved or its name can be added/changed.  

 
c) The State machine diagram pane is the one that displays the state 

machine diagrams. They can also be edited in this pane. 
The graphical elements used here are initial state, final state, state and 

transition. The menus, here as well, allow typical editing actions, like selecting 
an element, deleting an element and clearing the whole pane. When selecting 



58 

an element, it can be moved or its name can be added/changed by 
right-clicking on it.  

Fig. 5.3 shows a snapshot of this pane, where a state machine diagram 
for object Bank has been created. Setting the initial state has been done 
manually.  

 

 

 
Fig. 5.3 Snapshot of MUSEDESK: state machine diagram 

 
 
Along with the 3 main panes, for each type of diagram that we use, the 

main window contains additional tabbed panes, where the name of the project, 
the names of the diagrams and a description of the currently performed action 
appear.  

 
In section 5.4, we are going to illustrate step by step, on a specific 

example, the functionality of MUSEDESK. 
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We should mention here that the purpose of creating our system is the 
illustration of our proposed method of transformation of sequence diagrams 
into state machine diagrams, with an emphasis on the relationships between the 
sequence diagrams. Our intention is not the creation of a sequence diagram 
and/or state machine diagram editor. Therefore, the functionality of our system 
is focused mainly on the method of transformation, on showing that different 
relationships result in different state machine diagrams, and is less concerned 
with the graphical elements of the diagrams, with ways of saving and retrieving 
various diagrams. Several formats that allow the exchange of diagrammatic 
information between tools exist, and in our future work we are considering 
using XML, for instance, which would allow the export of our generated state 
machine diagrams directly into other tools that could make use of them. 

 
5.1.3. Description of the main classes 
 

The system has been developed using Java [53], with the structure of the 
classes strongly relying on design patterns [51].  

The hierarchy of the MuseApplication package appears in Fig. 5.4. (the 
structure is separated into two different captions because of its size; the 
captions are made from the Eclipse [54] hierarchy perspective). In the 
following, we will describe briefly the main classes that allow the functioning 
of the system. 
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Fig. 5.4 Hierarchy for Muse_application package 
       



61 

1) MuseAppl 
 
The main application is MuseAppl.java. This is the class that creates the 

main window, the three main panes, the tabbed panes and the menus. The 
application is an event based application, and therefore it responds to actions 
performed on its main window. 

 
2) MuseMediator, MuseDDMediator and MuseSTDMediator 
 
We have relied strongly on design patterns in the developing of our 

application. One of the most useful patterns that we have used is the mediator 
pattern, as described in [52], which allows a loose coupling between a large 
number of classes. There are 3 mediator classes, one for each type of diagram: 
MuseMediator.java, MuseDDMediator.java and MuseSTDMediator.java. Each 
of these mediators has an important role for each type of diagram, respectively, 
and each class is the only class that has detailed knowledge of the methods of 
the other classes that relate to the specific diagram. Mediators implement the 
commands, that is the pressing of the buttons, which each generate the 
performing of a certain operation.  

 
3) MuseCommand and MuseXXXButton 
 
The command pattern is used to keep the program and user interface 

objects completely separate from the actions they initiate [52]. Specifically, the 
Command class has an execute method that is called when an action occurs on 
that object. The execute method is then provided for each object that carries out 
the desired action; in our case, it is provided in each button class, 
corresponding to all the buttons we have defined: MusePickButton.java, 
MuseRectButton.java, MuseRemoveButton.java, MuseDDScButton.java etc. (a 
total number of 16 such classes, each corresponding to a certain button). 

 

Fig. 5.5 shows how the mediator class for the state machine diagram 
editor connects the buttons and the interface command. 
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Fig. 5.5 Interaction between MuseSTD_Mediator and Command 
 
 
 
4) MuseStateManager 
 

    Each of the buttons defined in our toolbars does something different when 
it is selected and the mouse is clicked; thus the state of the application affects 
the behavior. To illustrate this, we have found the state pattern helpful; this 
pattern is used to have one object represent the state of the application and to 
switch application states by switching objects [52].  

A state manager class sets the current state and executes methods on that 
state object. MuseStateManager.java class is the one that sets our current state. 
This state can be one of creating a certain element, any of the ones involved in 
the totality of diagrams, performing an action on a specific element, like 
removing it, a certain button being pressed, or performing an operation on a 
given object, like displaying the individual state machine or the final state 
machine for it.  
     The state manager calls the methods of whichever state object is current. 
For instance, when a mouse is pressed, according to the current state, the 
corresponding method is called: 
 

MuseSTD 
PickButton  

MuseSTD 
TransLineButton 

MuseSTD 
StateButton 

MuseSTD 
InStateButton 

MuseSTD 
FStateButton 

<<interface>> 
MuseCommand   

 MuseSTD_ 
Mediator   
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public void mouseDown (int x, int y) 

 { 

currentState.mouseDown(x,y) 

} 

 

     The mediator class is the one that tells the state manager when the 
current program state changes. Each button click calls a specific method and 
changes the state. There are startXXX methods, called from the execute method 
of each button, that set the appropriate state (and turn off the other buttons), 
like we have in the following, for the button creating a state in the state 
machine diagram editor: 
 
public void startState() 

  { 

   inStateButton.setSelected(false); 

   fStateButton.setSelected(false); 

   arrowButton.setSelected(false); 

   tLineButton.setSelected(false); 

   removeButton.setSelected(false); 

  } 

 
The execute method for the button that creates an object looks like this:  
 
public void execute() 

  { 

    stateMgr.setState(new MuseSTDStateState(med)); 

    med.startState(); 

   } 

 
The corresponding state classes show what has to be done in case of a 

mouse click and so on. We have state classes like: MuseArrowState.java, 
MuseRectState.java, MuseRemoveState.java, MuseSTDStateState.java, 
MuseSTDInStateState.java etc. Their number is equal to the number of button 
classes. 
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The interaction between the mediator and the state manager is shown in 
Fig. 5.6. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.6 Interaction between MuseSTDMediator 

and MuseStateManager 
 
 
5) Classes for graphical elements 

 
     The graphical elements are created in corresponding classes, one for 
each such element. Among these classes we find: MuseVisRect.java (for an 
object), MuseVisInState.java, MuseVisFState.java and MuseVisCircle.java (for 
initial, final and regular states) and so on. They are all subclasses of class 
MuseDrawing.java, which has defined all the graphical elements and the 
operations on them. We have also defined MuseLineDrawing.java as a subclass 
of MuseDrawing.java, responsible for drawing line-type graphical elements 
(like the messages in the sequence diagram, the relationship edges in the 
dependency diagram and the transitions in the state machine diagrams). This 
class has MuseVisiLine, MuseDDVisTransLine and MuseSTDVisTransLine.java 
as its subclasses (they create a message, a relationship edge and a transition 
respectively). 

 
MuseState

MuseSTD 
ArrowState  

MuseSTD 
TransLineState 

MuseSTD 
StateState 

MuseSTD 
InStateState 

MuseSTD 
FStateState 

  MuseState 
Manager   

 MuseSTD 
Mediator   
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     The mediator classes are the classes which contain most of the methods 
responsible for the transformation of sequence diagram elements into state 
machine diagram elements. The method setElement is the one in charge with 
remembering the type of diagram elements that have been created and 
producing the list of these elements. Depending on the type of drawing element, 
this method remembers the element type (object or message, in the case of 
sequence diagrams, scenario or relationship in the case of dependency 
diagrams, state or transition in the case of state machine diagrams) and adds it 
to the corresponding list (the lists are vectors like objectlist, messagelist, 
scenariolist etc.) .    
 

 
public void setElement(MuseDrawing d) 
  { 
 
    if(d instanceof MuseVisRectangle) 
    { 

… 
objectlist.addElement(((MuseVisRectangle)d).name) 
} 

 
    if(d instance of MuseVisiLine) 
    { 
    … 

messagelist.addElement(((MuseVisiLine)d).name) 
} 
…  

} 
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5.2. Automated Teller Machine example 
 

5.2.1 Description of ATM system 
 
    We are going to illustrate the process of transformation of sequence 
diagrams into state machine diagrams using our system on an example, based 
on the one used by Rumbaugh et. al in [31], that is an ATM system. Let us 
consider a banking network including automated teller machines to be shared 
by a consortium of banks. ATMs communicate with a central computer which 
clears transactions with the appropriate bank. An ATM accepts a cash card, 
interacts with the user, communicates with the central system to carry out the 
transaction, dispenses cash, and prints receipts. We will use (simplified) typical 
scenarios for user interaction with an ATM machine, like inserting or removing 
a card, entering a password, deciding upon a certain type of transaction 
(withdrawal, deposit or transfer) and so on. 

 

5.2.2 The process of transformation in MUSEDESK 
 

Phase I 
     In the first phase, the sequence diagrams corresponding to the given 
scenarios are created.  

In our ATM example, let us assume that the user is first presented with 
the main screen, then (s)he inserts the card and the password, and, after the 
validation with the bank and the consortium of banks, (s)he can choose among 
the three possible transactions: withdrawal, deposit or transfer. We therefore 
suppose that we have the following three possible initial scenarios: one which 
deals with withdrawal of cash, one which allows depositing cash and a third 
one which deals with transferring a certain amount of money into a different 
account. These initial scenarios are Scenario_withdraw_initial (Sc10), 
Scenario_deposit_initial (Sc20), Scenario_transfer_initial (Sc30).  

The three sequence diagrams that represent the three scenarios are 
created in the sequence diagram pane; this is done by choosing various 
graphical elements, like objects and messages; their names are inputted by 
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right-clicking on the corresponding element. A list of objects and a list of 
messages are produced for each sequence diagram. After finishing the editing, 
the name for the created sequence diagram is inputted. Fig. 5.7 shows a caption 
of the sequence diagram pane, where Scenario_withdraw_initial has been 
created. Fig. 5.8 and Fig. 5.9 show the other two scenarios, 
Scenario_deposit_initial, Scenario_transfer_initial. 

 

 
 
 

Fig. 5.7 Scenario Scenario_withdraw_initial for an ATM 
 
 
     The system saves the names of the objects created in a vector of names, 
“objectlist”. The messages are also remembered; the list of messages for this 
partially created scenario, Sc10, maintained by the mediator class, is the 
following: 
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(M_10, Display main screen), (M_01, Insert card), (M_10, Request password), 
(M_01, Enter password), (M_12, Verify account), (M_23 Verify card with 
bank), (M_32, OK bank account), (M_21, OK account), (M_10, Display 
options menu), (M_01, Request withdraw) 
 
(Similar lists are created for the other two scenarios.) 
 

 

 

Fig. 5.8 Scenario Scenario_deposit_initial for an ATM 
 
     After the representation of the initial sequence diagrams, we need to 
perform their normalization (involving the removal of overlapping). The 
system checks the 3 lists it created and it looks for a number of N or more 
consecutive common elements. (We have previously decided, as shown in 
section 3.3, that N = 5 is the minimum number of common messages which we 
will consider for the creation of a new sequence diagram.)  
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Fig. 5.9 Scenario Scenario_transfer_initial for an ATM 

 
The system finds 9 common consecutive messages; they correspond to 

the part where the user inserts the card and this card is authenticated with the 
bank. The messages that are found as being common to the three given 
scenarios are:  

 
(M_10, Display main screen), (M_01, Insert card), (M_10, Request password), 
(M_01, Enter password), (M_12, Verify account), (M_23 Verify card with 
bank), (M_32, OK bank account), (M_21, OK account), (M_10, Display 
options menu) 
 

These messages will form a new scenario, which we will call 
Scenario_start, and which appears in Fig. 5.10. After removing the overlapping, 
the other three newly obtained scenarios are Scenario_withdraw, 
Scenario_deposit, Scenario_transfer. 
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Fig. 5.10 Scenario Scenario_start for an ATM 
 

     The system separates the common messages and those that are not 
common into different lists. However, it does not automatically draw the new 
sequence diagram on the screen. In the current version, this is done manually 
by the user. 
     As we have mentioned in section 5.1, the purpose of our actual system is 
to show the importance of dependencies between various scenarios in the 
creation of state machine diagrams. Our system focuses on this feature, but it 
does not have the capabilities of a diagram editor. Consequently, in its current 
version, the information contained in the created diagrams is remembered only 
in terms of semantic elements, like messages, states, transitions etc., not 
graphical information. Therefore the diagrams cannot be recreated graphically 
in their corresponding pane, once they have been erased.  
 
     Result of phase I: 4 normalized sequence diagrams. 
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Phase II 
After the normalization of the sequence diagrams, we will represent the 
relationships existing between them. These relationships are reflected in the 
dependency diagram in Fig. 5.11. We cannot find any “sub-part” type of 
relationship in our example, and therefore the normalized sequence diagrams 
obtained in phase I will remain unchanged. 
 

The dependency formula that represents the dependency diagram has the form: 

Scenario_start ; (Scenario_withdraw ∨ Scenario_deposit ∨ Scenario_transfer) 
 

Result of phase II: (the same) 4 normalized sequence diagrams, along with one 

dependency diagram. 
 

Fig. 5.11 Dependency diagram for the ATM example 
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Phase III 
     In this phase we focus on a certain object and create its state machine 

diagram, including its complete behavior, as reflected in the given scenarios. 
The system has already created a list including all the objects appearing in the 
sequence diagram (“objectlist”). This list can be displayed on the main screen 
and the desired object can be selected. In the snapshot in Fig. 5.12, we can see 
the list containing the 4 objects created (“List of created objects”). Currently, 
object ATM is selected.  
 

 

 
 

Fig. 5.12 Selecting the desired object from 
the list of created objects 

 
 

In our example, let us focus on object ATM and create the state machine 
diagram for this object.   
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Phase III.1 
First, we will find the sequence diagrams in which our object appears. 

This is done by searching if the object name ATM appears in the list of 
messages of the sequence diagrams. The result is that it appears in all 4 
scenarios; this means that we will have 4 initial state machines for object ATM.  

 
As described in the algorithm in section 4.3, for each sequence diagram 

where the specified object appears, we will search the message tuples and do 
the following: 

- if the object is the originator of the message, we will create a state 
with the same name; 

- if the object is the receiver of the message, we will create a 
transition with the same name. 

This results into two different lists, one for states, one for transitions. 
Again, the mediator class is the one where these lists are created.  
     The following represent the lists of states and transitions corresponding 
to the first scenario where object ATM appears, that is Scenario_ start: 
 
- list of states: SATMLS1 = {(state, Display main screen, 1), (state, Request 

password, 3), (state, Verify account, 5), (state, Display options menu, 7)} 
- list of transitions: SATMLT1 = {(trans, Insert card, 2), (trans, Enter password, 

4), (trans, OK account, 6)} 
 

After checking the order of the elements in the list, we create a combined 
list of states and transitions; our list for the first sequence diagram is the 
following: 
SATMM1 = {(state, Display main screen, 1), (trans, Insert card, 2), (state, 
Request password, 3), (trans, Enter password, 4), (state, Verify account, 5), 
(trans, OK account, 6), (state, Display options menu, 7)}. 

 

     For our system, this means that we have all the semantic information 

necessary to create an initial state machine diagram. However, if we are 

interested in the overall behavior of object ATM, resulting from all scenarios, 

we actually need the complete information showing the behavior of the object 
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from all scenarios. We could choose to represent this initial state machine 

diagram graphically, but it would not serve our ultimate purpose. 
 

Similarly, we will obtain lists of states and transitions for the other 3 
initial state machines for object ATM: 

 
- combined list of states and transitions obtained from Scenario_withdraw: 
SATMM2 = {(trans, Request withdraw, 1), (state, Request amount, 2), (trans, 
Insert amount, 3), (state, Display balance, 4), (state, Eject cash, 5), (state, 
Eject card, 6), (state, Request take card/cash, 7), (trans, Take cash/card, 8), 
(state, Display main screen, 9)} 
 
- combined list of states and transitions obtained from Scenario_deposit: 
SATMM3 = {(trans, Request deposit, 1), (state, Request insert cash, 2), (trans, 
Insert cash, 3), (state, Display balance, 4), (state, Eject card, 5), (state, 
Request take card/cash, 6), (trans, Take cash/card, 7), (state, Display main 
screen, 8)} 
 
- combined list of states and transitions obtained from Scenario_ transfer: 

SATMM4 = {(trans, Request transfer, 1), (state, Request account, 2), (trans, 

Insert account, 3), (state, Request amount, 4),  (trans, Insert amount, 5), (state, 

Display balance, 6), (state, Eject card, 7), (state, Request take card/cash, 8), 

(trans, Take cash/card, 9), (state, Display main screen, 10)} 
 
Result of phase III.1: 4 initial state machine diagrams (for object ATM). 
 
 

Phase III.2 

     According to the information in the dependency diagram in Fig. 5.11, the 

state machine resulting from Scenario_initial precedes the other state machines. 

The rest of the 3 state machines are combined with OR. (A single default state 

will exist.) This allows us to obtain the meta-list of states and transitions, 

following the dependency formula written in the previous phase. Our meta-list 

for object ATM will look like in the following: 
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{((state, Display main screen), (trans, Insert card), (state, Request password), 
(trans, Enter password), (state, Verify account), (trans, OK account), (state, 
Display options menu)) ; (((trans, Request withdraw), (state, Request amount), 
(trans, Insert amount), (state, Display balance), (state, Eject cash), (state, Eject 
card), (state, Request take card/cash), (trans, Take cash/card), (state, Display 
main screen)) ∨ ((trans, Request deposit), (state, Request insert cash), (trans, 
Insert cash), (state, Display balance), (state, Eject card), (state, Request take 
card/cash), (trans, Take cash/card), (state, Display main screen)) ∨ ((trans, 
Request transfer), (state, Request account), (trans, Insert account), (state, 
Request amount),  (trans, Insert amount), (state, Display balance), (state, 
Eject card), (state, Request take card/cash), (trans, Take cash/card), (state, 
Display main screen)))} 
 

 

Again, this list contains all the information regarding the states and 

transitions in the state machine diagram for object ATM. The graphical 

information is not contained here and this is why the graphical visualization of 

the diagram cannot be obtained automatically. If we want to construct this 

diagram using our system, we use the list of states and transitions provided in 

the meta-list; they are ordered and they contain all the necessary semantic 

information. (The only exception is the setting of the default state, which is not 

automatically generated in our approach.)  

We can use the state machine diagram editor to graphically create the 

resulting state machine diagram; part of this diagram is visible in Fig. 5.13.   

 

Result of phase III.2: the final state machine diagram for object ATM. 

 
In our example we chose to generate the state machine diagram for one 

object only, ATM. If we were to generate the state machine diagrams for the 

other objects, the result of phase III.2 would be a number of 4 final state 

machine diagrams, one for each existing object. The state machine diagram for 

object User, which appears in 4 sequence diagrams, can be obtained in a 
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similar manner. In the case of objects Bank and Consortium, they appear in one 

scenario only; we would therefore have one initial state machine diagram for 

each, and this would be the same as the final state machine diagram.  

 

 
 

Fig. 5.13 Final state machine diagram for object ATM 
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5.2.3 Other features and limitations 
 
• Guards 

We should note that in our example’s sequence diagrams we did not have any 

messages with guards attached to them. As we have shown in section 4.3, in 

case guards are involved, these guards are going to appear together with the 

event; thus they will appear only for the receiving object. In case there is a 

guard attached to an outgoing message from an object, it will be considered 

when creating the state machine for the object that receives this message.  

• Type of message 

We considered all our messages to be synchronous by default and therefore we 

have not included information related to their type at all. As we have shown in 

section 3.2, the message tuple includes, as a third element, the type of message; 

in our case it was considered “1” by default, for all messages (1 is the value for 

synchronous message). 

• Lost and found messages 

These features can be included in the sequence diagram, as graphical elements. 

However, their influence on the obtained state machine diagram is not 

significant from our point of view and we have therefore not included them in 

our example. In theory, for a lost message, according to its definition, we will 

have only a sending object. The state machine diagram for this object will 

therefore include a state with the same name (there will not exist any object 

with a transition resulting from this message). For a found message, we will 

have only the receiving object, and therefore a transition for this object will 

exist (but no object having a state with the same name as the found message).   

• “Correctness” of sequence diagrams 

One important issue that we need to emphasize is that our approach is not 

concerned with the elicitation of requirements itself. Therefore, in our system, 

the creation of sequence diagrams practically suggests that this is equivalent to 

writing the requirements. This should be done on the basis of certain assumed 

scenarios (given, for instance, in natural language). For the purpose of proving 
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our point, which is the transformation of scenarios (sequence diagrams) into 

state machines (with an emphasis on relationships between scenarios), we have 

to consider that the user knows exactly the interaction between various objects 

in the sequence diagram and thus the creation of sequence diagrams is only a 

matter of graphical editing in our system. The process of identifying exactly 

the objects and the messages exchanged between them, on the basis of given 

scenarios, is a different matter, which is outside our current concern boundaries. 

It is arguable that the creation of sequence diagrams from requirements given 

as scenarios written in natural language (or any other form) is a straightforward 

operation. In the same way, ensuring that requirements are correct or, at least, 

that the created sequence diagrams reflect the given requirements, is a matter 

which constitutes in itself an entire area of research. Our intention is to show 

how the state machine diagrams depend on these sequence diagrams and on the 

relationships between them, and, in order to do this, we assume that the 

sequence diagrams are “correct”, i.e. they reflect the requirements of the 

system.   

 

• Scalability and maintainability of our system 

Our system can be easily applied to large systems, where the requirements are 

very extensive, as long as they can be expressed in scenarios represented as 

sequence diagrams. Actually, the experiments we have performed showed that 

our system behaves well when the input is a large number of sequence 

diagrams, with a large number of messages.  

     As for maintainability, our system is small enough not to pose special 

problems when it comes to its maintainability. We believe that if new issues 

arise, new requirements for it, for its improved performance, our system can be 

easily modified to be able to fulfil these new requirements.  
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Chapter 6 
 
MUSEDESK System Evaluation 
 
 

6.1. Experiment description and results 
 

The final purpose of our proposed approach is the obtaining of state 
machine diagrams. We are going to compare the process of obtaining these 
diagrams manually with that of obtaining the diagrams by using our system 
MUSEDESK. For this, we have conducted an experiment in which a number of 
6 participants were given simple requirements for a software application, given 
in natural language (as scenarios are often written) and they were asked to 
obtain the state machine diagram for a certain object in two ways: first, 
manually (using pencil and paper) and then automatically, using our system.  
     All 6 users were males between the ages of 25 and 36 and all had a 
computer science background. Half of the users considered their knowledge 
about UML concepts as average, while the other half considered their UML 
knowledge below average.  

The average time per participant needed for performing one complete set 
of tasks (including training and general explanations) was around 30 minutes. 
We have performed all the measurements on a 1.3GHz computer, with a 
Celeron M microprocessor and 512Mb of RAM. Our system was developed in 
Java 1.5 in a Windows XP environment.  
 
The requirements specifications and the required final task appear in Fig. 6.1. 
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Requirements specifications 
 
Let us consider that we have a CD Player system, which contains a remote 
controller (object Ctrl) and the CD device itself (object Device). 
The remote controller has 3 buttons: one for the speakers (speakerbt), one 
which makes the device play (playbt) and one which stops the device (stopbt). 
 
We assume the following two scenarios: 
 
Scenario 1 
1.1 The user presses the “speakerbt” button, which activates the left speaker of 
the device. 
1.2 Then, the user presses the “speakerbt” button again, which activates the 
right speaker of the device. 
1.3 After the user presses the “speakerbt” button for the third time, both 
speakers of the device are activated. 
 
Scenario 2 
2.1 The user presses the “playbt” button and the device starts playing. 
2.2 The user presses the “stopbt” button and the device stops playing. 
 
 
Consider that scenario 1 takes place first, and it is followed by scenario 2. 
 
TASK: 
Create the state machine diagram for the remote controller object (Ctrl). 
 
 

Fig. 6.1 Requirements specifications for a CD Player system 
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We are going to call the two terms of our comparison “manual process” and 
“MUSEDESK process” and we are going to describe them in the following. 
 
 
Case I: Manual process 
 
In this case, the users perform the final task directly from the given 
requirements, so they have to: 
- create the state machine diagram for the given object. 
 
The users were given the requirements in Fig. 6.1. After studying them 
carefully, they created the state machine diagram. The time necessary to create 
the state machine diagrams for each participant appears in Table 6.1. (We have 
considered this as “Task A”.) 
 
 
Table 6.1 Time needed to create the state machine diagram for object Ctrl 
in the manual process, directly from the given requirements specification 

 
   Participant 
Task 

1 2 3 4 5 6 average

 
Task A 

 
3`29`` 

 
4`18``

 
3`32``

 
4`23``

 
3`51``

 
4`07`` 

 
3`58``

 
 
We have noticed the following general tendencies when creating the state 
machine diagrams manually, directly from the given requirements: 
 
a) introduction of additional, unnecessary states   
This was the case with regard to the states arising from pressing the buttons 
“Play” and “Stop”. Two of the users introduced the following states: “Play”, 
“devicePlay”, as well as “Stop” and “deviceStop”. In each pair, one of the 
states is redundant. (At the end of the experiment, when asked to explain their 
use, the users admitted that they were not in fact necessary.) 
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b) missing transitions 
This was the case of “speakerbt”; although 3 transitions with this name result 
from scenario 1, the participants were tempted to write its name only once, 
afterwards ignoring it. 
Also, “speakerbt” was missing as a first transition in the state machine diagram, 
in the case of one user.  
 
c) “over-interpretation” of the requirements 
The users included in the state machine diagram behavior which was not 
expressed in the requirements. For example, although it might seem natural to 
consider that after reaching state “Stop”, the device will be again in the state it 
started from, where “speakerbt” is pressed, this kind of behavior is not part of 
the requirements. Therefore, the resulting state machine diagram does not 
reflect the given requirements, but the subjective addition of requirements 
resulting from the user’s personal opinion. 
 
d) separation of state machine diagrams into several parts 
Instead of obtaining one single state machine diagram for the required object, 
one of the participants has created 3 diagrams, one corresponding to each 
function of the device being modeled. Interestingly, the user did not create one 
diagram for each scenario, but one diagram for each function of the system 
(one for the “speakerbt” related behavior, one for “playbt” and one for 
“stopbt”). 
 
e) necessity to familiarize with state machine diagram concepts 
For the participants less familiar with UML concepts, additional time was 
necessary to familiarize with the significance of states and transitions in state 
machine diagrams. This operation was actually the most time consuming. (For 
this half of the participants, not familiar with UML, the average time needed to 
understand simple states and transitions was around 6 minutes.) 
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Case II: MUSEDESK process 
 
When using MUSEDESK, the user has to perform the following activity only: 
- create the sequence diagrams corresponding to the given scenarios from the 
requirements specifications (and specify their relationship). 
After choosing the desired object, the system obtains the information necessary 
for creating state machine diagrams automatically, without the intervention of 
the user.  
 

The participants studied the given requirements and then used our system 
to create the sequence diagrams. Editing the diagrams was straightforward, 
although in the beginning the users took longer time in finding the appropriate 
buttons. (We have considered this as “Task B”). The time needed to perform 
this operation for the 6 participants appears in Table 6.2. 

As for the time needed for MUSEDESK to perform the automatic 
transformation into state machine diagrams, according to our measurements, its 
value is a few tens of milliseconds (even for large number of messages 
exchanged between various objects in sequence diagrams, like 1000 messages, 
the values remain in the same range, of tens of milliseconds). 
  
 

Table 6.2 Times (in minutes and seconds) for completing  
task B for the 6 participants 

 
   Participant 
Task 

1 2 3 4 5 6 average

 
Task B 

 
4`31`` 

 
4`40``

 
3`49``

 
5`02``

 
2`55``

 
4`18`` 

 
4`12``

 
The result of task B looks like in Fig. 6.2. This is a snapshot of the 

sequence diagrams created by one user; the other 5 look very similar. 
The final result, the state machine diagram itself, as it can be created 

based on the automatically created meta-list of states and transitions, looks like 
in Fig. 6.3. 
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Fig. 6.2 Result of task B for one participant 
 

 
As compared to the manual process, the MUSEDESK process, being an 

automatic one, cannot result in missing transitions, addition of extra states or 
unintended specifications. The process of creating the state machine diagrams, 
as described in chapter 4, states clearly how each transition and each state is 
born. This being an automatic process, it does not introduce errors like the ones 
appearing in the manual process. 
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Fig. 6.3 Result of using MUSEDESK in the creation of 
the state machine diagram 

 
 

 
Time comparison  
 
Let us now compare the time needed to achieve our goal (of creating state 
machine diagrams) in the two given cases.  
 
I. In case I, corresponding to a manual process, directly from the requirements 
specifications, the time is: 
 
  T1 = time_TaskA 
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II. In case II, when using MUSEDESK, the time is: 
 

 T2 = time_taskB + theta    (theta is in the range of tens of ms) 
 
Since time_taskB represents values in the range of several minutes, as 
compared to theta which is in the order of milliseconds, we can approximate 
the total time T2 needed by MUSEDESK to create a state machine diagram as 
being: 

 
T2 = time_TaskB  

 
Table 6.3 summarizes the values for the time needed to perform the whole 
process in the two cases.  
 
Now that we have obtained the amounts of time needed for each situation, let 
us compare them.  
 
 

Table 6.3 Time values (in minutes and seconds) for T1 and T2 
 

   Participant 
Time values 

1 2 3 4 5 6 average

 
T1   

 
3`29`` 

 
4`18``

 
3`32``

 
4`23``

 
3`51``

 
4`07`` 

 
3`58``

 
T2 

 
4`31`` 

 
4`40``

 
3`49``

 
5`02``

 
2`55``

 
4`18`` 

 
4`12``

 
 

a) We can notice from Table 6.3 that T2 is larger than T1 for 5 out of the 
6 participants; for these users, the time needed for creating state machine 
diagrams is slightly longer when using MUSEDESK as compared to the 
manual process without creation of sequence diagrams.  

For one participant, T2 is smaller than T1 (with 25%). 
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On average, the time needed by using our system is about 5% longer than 
the one needed for the manual process.  
 

b) The lists created automatically by MUSEDESK contain additional 
information related to the position of the element in the state machine diagram, 
allowing the system to automatically generate the elements of the diagram in 
the right order.  

These lists of states and transitions (equivalent to the requirements in 
task B), using the automatic generation mechanism offered by MUSEDESK, 
for object “Ctrl”, look like in the following: 

 
• “sequence diagram 1: 
- list of states: {(state, LeftSpk, 2), (state, RightSpk, 4), (state, Bothpk, 6)} 
- list of transitions: {(trans, speakerbt, 1), (trans, speakerbt, 3), (trans, 

speakerbt, 5)} 
 

• sequence diagram 2: 
- list of states: {(state, Play, 2), (state, Stop, 4)} 
- list of transitions: {(trans, playbt, 1), (trans, stopbt, 3)} 

 
However, when creating the lists manually, the users define the positions 

of various elements mentally, by looking at the position in the scenarios (or 
sequence diagrams), without the need to write them down.  

This works well in case of simple scenarios. As requirements become 
more and more complex, in the manual approach, the user will find it 
increasingly difficult to remember the position of states and transition and 
therefore he will have to write this down, as well. The time taken for task B 
would increase and this would lead to an increase in the time taken to achieve 
the goal. The time taken by MUSEDESK remains practically the same, thus, 
for larger and more complex systems, the time needed by MUSEDESK to 
achieve the goal can decrease even more, compared to the manual approach.  
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Observation 
A general observation refers to the fact that familiarity with UML 

concepts plays an important role in achieving the goal. Half of the users were 
acquainted with UML diagrams, while the other half had knowledge of the 
diagrams mostly by name. For instance, the users familiar with UML realized 
that an initial state might be needed in a state machine diagram. More 
significantly, for users not familiar with UML, the time needed to understand 
the concepts related to state machine diagrams (and sequence diagrams, if 
needed) was about twice larger than the time to create the state machine 
diagrams themselves. This slowed down even more the manual process of 
achieving the final goal. 

When using MUSEDESK, the users need to understand the requirements 
well, but they do not necessarily have to be very knowledgeable about state 
machine diagram concepts, about the flow of states and transitions. The 
diagrams are obtained automatically by the system and this can be very helpful. 

  
 

Elicited comments from the participants in the experiment 
 

We have gathered several comments and suggestions from the participants in 
the experiment. They are summarized in the following: 
 

 
 The system is helpful in obtaining the information necessary to create state 

machine diagrams for the desired objects. 
 Editing of sequence diagrams could be improved, made 

more ”user-friendly” (the only specifics given here were related to the way 
of selecting objects). 

 The messages in the sequence diagram should be tightly linked to the 
objects they involve. 

 Performing of illegal editing operations should not be allowed; corrections 
should be suggested for them. 

 The state machine diagrams and the dependency diagrams are easier to 
input than the sequence diagrams.  

 Selection of graphical elements in all diagrams should be possible any time 
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(not only when in selection mode). 
 The icons and the buttons in the sequence diagram toolbar should be more 

suggestive. 
 It would be helpful to the user to see what the system realizes in the 

background (for instance, to have easier access to the resulted lists of states 
and transitions). 

 
 

In conclusion, the time taken to obtain state machine diagrams is slightly 
longer when using MUSEDESK compared to the time needed for a manual 
creation of these diagrams from given requirements. However, this process can 
be speeded up using our system in case of larger sequence diagrams, that is, in 
case of larger scenarios.  

The more important contribution resides in the fact that the automatic 
process using MUSEDESK is less prone to errors. As the observations from 
“case I” have shown, in the manual process several errors can make place in 
the state machine diagram. When using MUSEDESK, there are no missing 
transitions or states, no over-generalizations of the requirements and no 
unnecessary states. 
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6.2. Comparison with SCED 

 
One of the closest related approaches to our approach is represented by 

SCED [9] and therefore we are going to make a comparison between some of 
the results using our approach and those using SCED. 

The SCED project has been carried out at the University of Tampere, 
Finland, by Kai Koskimies and his team. The central idea of SCED is to 
support a design-by-example approach for object-oriented analysis and design. 
The OMT method has been used as a guideline and notational basis, but in 
principle the approach used in SCED is not tied to any particular design 
methodology. SCED consists of two conventional CASE components, a 
scenario editor and a state diagram editor, and a more intelligent component, 
called a generator, integrating scenarios and state machines with various 
mechanisms. The generator can be asked to synthesize a state diagram for a 
selected object or an operation appearing in a desired set of scenarios. It can 
also be asked to check consistencies between scenarios and state diagrams, to 
construct scenario diagrams with the support of existing state machines and to 
generate various layout choices for state diagrams. 

SCED does not take into consideration the relationships between 
scenarios; it often gives a number of state machines equal to the number of 
scenarios where the object appears; it does not necessarily obtain, for one 
object, one state machine diagram. Our approach, on the other hand, creates a 
unified state machine diagram that considers the relationships between 
scenarios. It is therefore difficult to make a quantitative comparison between 
the two approaches. However, we are going to make a comparison showing the 
differences between the results in the two approaches.   

  
In order to illustrate our comparison, let us make use of part of the ATM 

example appearing in the previous chapter. Let us start from two scenarios: an 
authentication scenario (where the user inserts the card and this is verified with 
the bank) and a scenario of withdrawing cash. They appear in Fig. 6.4. We 
decided to focus on object ATM and create the state machine diagram that 
reflects its behavior.  
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Example 1 
Let us first consider the scenario Scenario authenticate and let us see the 

state machine diagram resulting from it. In SCED, the generated state machine 
diagram for object ATM resulting from this scenario appears in Fig. 6.5; this is 
an actual snapshot from the SCED system (we have changed the layout in 
order to be able to view a more clear state machine diagram; we have done the 
same for the other state machine diagrams obtained in SCED that will appear 
later). The state machine obtained using our approach appears in Fig. 6.6 and 
we can notice that the two state machines are equivalent. 

User ATM

Enter password

Insert card

Verify account

Display main screen

Verify card with bank

OK bank account

Request password

Display options menu

OK account

Consortium Bank

User ATM

Request withdraw

Request amount

Insert amount

Display balance

Eject cash

Eject card

Request take cash/card

Display main screen

Take cash/card

 
 

Fig. 6.4 Two scenarios for ATM example:  
Scenario authenticate and Scenario withdraw 
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Fig. 6.5 State machine diagram for object ATM  
resulting from Scenario authenticate in SCED 

 
 

Fig. 6.6 State machine diagram for object ATM  
resulting from Scenario authenticate in our approach 
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     Next, let us consider the other scenario, Scenario withdraw. The state 

machine diagram obtained in SCED for this scenario appears in Fig. 6.7, while 

the one obtained using our approach appears in Fig. 6.8. We can notice that, 

again, the sequence of states and transitions is basically the same in both cases. 

Thus, for this individual scenario, as well, we get similar results using SCED 

and using our approach. The question is how do the generated state machine 

diagrams differ in the two approaches when we consider both scenarios at the 

same time, not one by one. In SCED, after adding this second scenario, the 

generated state machine diagram for object ATM appears in Fig. 6.9. 

 
 

Fig. 6.7 State machine diagram for object ATM  
resulting from Scenario withdraw in SCED 
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Request amount

Insert amount 

Eject card

Request take card/cash

Take cash/card 

Display main screen

Display balance

Request withdraw 

Eject cash

 

 
Fig. 6.8 State machine diagram for object ATM  

resulting from Scenario withdraw in our approach 
 
 
We can notice that SCED considered the states resulting from Scenario 

withdraw as preceding those resulting from Scenario authenticate. This 
undesirable behavior has resulted from the fact that the message Display main 
screen (generating a state with the same name), exchanged between objects 
ATM and User, appears as the final message in Scenario withdraw and as an 
initial message in Scenario authenticate. SCED has considered that Scenario 
withdraw is immediately followed by Scenario authenticate and they are linked 
by this Display main screen message. We call this behavior undesirable, 
because the state machine shows that the behavior for object ATM should be 
such that the transitions and states involved in performing the withdrawal 
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operation come before those involved in authentication of the user’s card. In 
other words, the user withdraws an amount of money first and his card is 
verified with the bank afterwards.       

 

 
Fig. 6.9 State machine diagram for object ATM resulting from  

both Scenario authenticate and Scenario withdraw in SCED 
  



96 

   In our approach, we cannot create the state machine for object ATM unless 
we know exactly how the two given scenarios are related. The individual state 
machines corresponding to each scenario are not randomly merged, but they 
are merged according to the relationship existing between them, relationship 
that needs to be specified beforehand (and which appears in the dependency 
diagram). In this case, it is only natural to consider that the two scenarios are 
related with a succession dependency, more exactly Scenario withdraw 
succeeds Scenario authenticate. The resulting state machine diagram for object 
ATM using our approach appears in Fig. 6.10.  
 

Display main screen

Insert card 

Display options menu

Request take card/cash

Request withdraw 

Verify account

OK account 

Request password

Enter password 

Request amount

Display balance

Eject cash

Eject card

Insert amount 

Take cash/card 

 

 
Fig. 6.10 State machine diagram for object ATM resulting from  

both Scenario authenticate and Scenario withdraw in our approach 
 

 
We can notice that, as opposed to the state machine diagram obtained in 

SCED, our state machine diagram reflects clearly the fact the card has to be 
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authenticated first and only then it can be used to withdraw cash form an ATM 
system. Even though it is possible to go through the whole process of 
authentication after the withdrawal, it is clear that a withdrawal is not possible 
without the authentication talking place first. This is the desired behavior in the 
use of the system and our approach reflects it in the obtained state machine 
diagram for the object ATM. We have obtained this result because we have 
explicitly pointed out that Scenario authenticate is succeeded by Scenario 
withdraw; in other words, we have taken into consideration how the two 
scenarios are related to each other and used this information when synthesizing 
our state machine diagram. Unwanted behavior as the one in Fig. 6.9 could not 
result by using our approach (unless, of course, we specifically wanted 
Scenario withdraw to come before Scenario authenticate and we considered 
such a succession relationship).  

 
 
Example 2 

     For a new comparison, let us consider a slightly modified example, with 
two scenarios as well. We will use Scenario authenticate as it is, as it appears 
in Fig. 6.4, and we will create a new scenario, named Scenario withdraw 
transaction, looking very similar to the original Scenario withdraw. The only 
difference is that we replace the last message in Scenario withdraw, that is 
Display main screen, with the message Transaction completed. We do this so 
that we do not have a message with the same name in the two scenarios. The 
new scenario appears in Fig. 6.11.  

Let us focus on object ATM again and create the state machine diagram 
that reflects its behavior. The individual state machine diagrams, obtained by 
considering only Scenario authenticate, are the same (that is, Fig. 6.5 in SCED 
and Fig. 6.6 in our approach). As for Scenario withdraw transaction, the 
individual state machine diagrams which consider only this scenario appear in 
Fig. 6.12 (using SCED) and Fig. 6.13 (using our approach).  
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Fig. 6.11 Scenario Scenario withdraw transaction 
 

 

Fig. 6.12 State machine diagram for object ATM  
resulting from Scenario withdraw transaction in SCED 
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Request amount

Request withdraw 

Eject card

Request take card/cash

Take cash/card 

Transaction completed

Display balance

Insert amount 

Eject cash

 

Fig. 6.13 State machine diagram for object ATM 
resulting from Scenario withdraw transaction in our approach 

 
 

Now, let us consider both scenarios and create the state machine diagram 
for object ATM that reflects the overall behavior in these two scenarios. Using 
SCED, we obtain two separate state machines, as in Fig. 6.14. From SCED’s 
point of view, there is no apparent relationship between the two scenarios and 
therefore the result will be two separate, unrelated, state machine diagrams. 

In our approach, again, we have to know first the relationship between 
the scenarios. We will consider this time as well that we have a succession 
relationship, that is Scenario authenticate is succeeded by Scenario withdraw 
transaction. The result appears in Fig. 6.15. 
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Fig. 6.14 State machine diagram for object ATM resulting from both 
Scenario authenticate and Scenario withdraw transaction in SCED 

 
 
We observe that in case the individual scenarios have no common 

messages, SCED will have no way of merging the resulting state machines and 
therefore it will have separate state machines, one for each scenario where the 
object appears. This is the same in phase III.1 in our approach, but the 
considerable difference is that we do not stop at this point, we are not content 
with a number of isolated, individual state machines, each one reflecting the 
behavior in one scenario. We want to illustrate the overall behavior of the 
object and we do so by merging the individual state machine diagrams (initial 
state machine diagrams, as we call them) during phase III.2 of our synthesis 
process. Therefore, while in the case of SCED there are two resulting state 
machine diagrams and no knowledge about how they are connected, in our 
approach there is one unified state machine diagram, reflecting the object’s 
behavior as a whole. This state machine diagram can be used further in the 
development process, for generating code for the given object. 
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Fig. 6.15 State machine diagram for object ATM resulting from both 

Scenario authenticate and Scenario withdraw transaction in our approach 
 
 

We have chosen these examples that involve a succession relationship to 
prove some important points, as summarized below. We should mention here 
that SCED does not support concurrent state machines, while our system 
allows their use.  
 
     We therefore conclude that without clear guidance as to the relationship 
between scenarios, there are two drawbacks: 

1. we might obtain undesirable behavior (like the one in Fig. 6.9) or  
2. we might obtain several seemingly unrelated state machine diagrams, 

not the complete behavior of the desired object in one unified state 
machine diagram.       
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Comparison summary 
 
Summarizing, here are the main features of SCED, from the point of 

view of the generated state machine diagrams:   
• for one object, one scenario results in one state machine 

diagram, while n scenarios might result (in most cases) in n state 
machine diagrams; 

• the system considers the union of the state machines; 
• if common messages exist between them, they are merged; 
• there is no regard for inter-scenario relationship; actually, there 

cannot be any such regard, since the system has no idea about 
the relationship between scenarios; 

• does not support concurrency; 
• given a number of scenarios, the generated state machine 

diagram is unique. 
 
 
     In contrast, our approach’s main features, from the same point of view, 
are: 
• for one object, one scenario results in one state machine diagram, while n 

scenarios also result (in most cases) in one state machine diagram; 
• when creating the state machine diagram for an object involved in two or 

more scenarios:  
 the system creates one state machine diagram for each scenario where 

the object appears (the state machine diagrams are not merged by 
default, no matter how many common messages they have); 

 the system checks the relationship between the scenarios and THEN 
does the merging;  

 concurrency in the state machine is possible, if concurrent scenarios 
were involved; 

 given a number of scenarios, usually there is one state machine 
diagram describing the whole behavior of an object; 

 depending on the relationship between the scenarios involved, we 
have different state machine diagrams. 
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     This last feature is of outmost importance when we try to find out the 
complete behavior of an object. Different relationships between the given 
scenarios result in different behaviors of the object and thus it is crucial to 
know exactly which is the relationship that expresses the requirements given in 
the scenarios. This is what makes the dependency diagrams so useful and 
important; they help in obtaining the state machine diagrams that express the 
complete and accurate behavior of the objects involved. 
 
     We therefore consider that by using our approach we can obtain state 
machine diagrams that reflect the behavior expressed in the given scenarios. By 
merging the information in all the individual state machine diagrams, obtained 
for all the scenarios where the desired object appears, we can deliver a 
complete and unambiguous behavior of the object and this can further be 
helpful in generating its implementation. 
     Moreover, our approach can be integrated into other systems which 
transform scenario models (like sequence diagrams) into state machine 
diagrams. The construction of the dependency diagrams has to be added; as for 
the behavior illustrated in these diagrams, that is the relationships between 
scenarios, this has to be integrated in the system’s mechanism that transforms 
the scenario models into state machine diagrams.  
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Chapter 7 
 
Concluding Remarks 
 
 

We have proposed a means of support for the dynamic modelling during 
the design phase of developing a software system. Our proposal is based on the 
use of a new type of diagrams, named dependency diagrams, which are able to 
represent the various kinds of relationships existing between scenarios. They 
present the advantage of an enhanced traceability and a better overview of the 
system. We have classified the possible relationships between various 
scenarios and created the possibility to represent these relationships in the 
dependency diagrams. 
     Our focus is on dynamic models, more specifically on sequence 
diagrams and state machine diagrams. In order to make use of the benefits of 
both models, we propose a process of transformation of sequence diagrams (as 
representations of scenarios) into state machine diagrams. This transformation 
is performed by taking into consideration the relationships between the given 
scenarios. 
     The obtained state machine diagrams can be used for detailed design 
models and code can further be generated from them. Using our approach, we 
can support both the analysis and design phases and we can bring the developer 
one step closer to the implementation. 

Moreover, dependency diagrams could be used during the testing phase; 
they can facilitate the generation of new test cases by traversing paths through 
them. We intend to explore this possibility in the future. Two more possible 
future work directions are described in the following. 
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7.1. Using our approach in real-time systems 
 
     When modeling a real-time system, not only structural and dynamic 
behavior have to be considered, but also time constraints are mandatory for 
correctness [47]. Time constraints appear in the category of non-functional 
requirements, along with scalability, cost etc.   

 Sequence diagrams allow the expressing of some time constraints, at a 
very basic level. Sequence diagrams often represent scenarios, while scenarios 
are paths through use cases. It is well known that use cases are mainly used for 
functional requirements, therefore not very well suited for showing 
non-functional requirements. Information about non-functional requirements 
can be added in a supplementary specification, which is different from the one 
appearing in use-cases [48]. Actually, for real-time systems, it is quite possible 
that a greater percentage of the system requirements reside in the 
supplementary specification.  

The most widely used way to express non-functional requirements in 
general and time constraints in special is through annotations. 

When applying our approach to real-time systems, the sequence 
diagrams can be extended with specific notation for real-time situations. The 
question is if the dependency diagrams would also require an extended notation. 
As for how this information appears in state machine diagrams, one possibility 
would be the already used annotations. This is an issue that needs further and 
thorough exploration. 

 

7.2. Consistency check between scenarios and state 
machines 
 

Our final purpose is obtaining state machine diagrams that reflect the 
complete behavior of the objects involved. One important issue for obtaining a 
correct and complete final state machine diagram for each object addresses the 
consistency between the state machines and the scenarios. We have to make 
sure that the behavior of the final state machine diagrams reflects the 
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information contained in the scenarios, so that we respect the requirements 
specifications. This is a task that involves the detection of implied scenarios, 
the unwanted behavior appearing in the state machines, and the possible 
conflicts that might arise. Throughout the whole transformation process, 
starting from the normalization of sequence diagrams and ending with 
synthesizing the final state machine diagram, we should always make sure that 
the behavior expressed in scenarios has not been altered. 

In our current approach, the consistency check is done by verifying the 
states and transitions in the state machine diagram against the messages in the 
sequence diagrams. For now, it is a process performed manually, but as part of 
our future work we intend to develop automated methods that verify whether 
consistency is accomplished. 
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