Automatic Code Generation from
Object Oriented Models

July 1998

Jauhar Ali

Lt (LZ) ZMiEX

Automatic Code Generation from
Object Oriented Models

7Y MEMETIVOSDEEIO— NAER

AP P A

TEFER BT - [FHRLFHER

71 Yan)u

SR 104E 7 A

Automatic Code Generation from
Object Oriented Models

Jauhar Ali

July 1998

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Engineering

Institute of Information Sciences and Electronics
Doctoral Program in Engineering

University of Tsukuba, Japan

Abstract

Object-oriented methodologies suggest to create different models of a system
indicative of its different aspects. Object Modeling Technique (OMT), an object-
oriented methodology, represents the static structure of classes in a system by
an ER-style diagram called the object model, and the dynamic behavior of the
classes by a set of state transition diagrams called the dynamic model. To speed
up the software development process, it has been desired to have CASE tools

that can automatically generate code from these models.

In the present work, an attempt has been made to find methods to automati-
cally generate executable code from the object-oriented models in general and the
dynamic model in particular. An object-oriented approach has been proposed to
convert a state diagram representing the behavior of a multi-state class into code.
States are treated as classes and transitions as their operations. Inheritance is
used to implement state hierarchy and object composition is used to implement
concurrent states. It is realized that active objects can well be represented by
activity diagrams rather than state diagrams. In the proposed approach, active

objects are implemented as Java threads.

A system, O-Code, has also been developed that implements the proposed
method and automatically generates executable Java code from the specifications
of the object and dynamic models. A comparison with Rhapsody shows that the
code generated by O-Code is much more compact, efficient and understandable

than that of Rhapsody.

Contents

List of Figures
List of Tables

1 Introduction
1.1 Project Background Lo
1.2 Automatic Code Generation
1.3 Goal and Objectives

1.4 Organization L o

2 Background
2.1 Object Modeling Technique (OMT)
2.1.1 Three Models oL
2.2 Unified Modeling Language (UML)

2.3 Specification Languages (RSL and DSL)

3 Dynamic Model with a Single State Diagram

10

11

12

12

13

13

14

16

17

18

3.1 Imtroduction 18

3.2 Converting a State Diagram into Code 18
3.2.1 Dealing with State Hierarchy 20

3.3 A Simple Calculator 21
3.3.1 Calculator: Object Model 22
3.3.2 Calculator: Dynamic Model 22

3.4 Automatic Code Generation 23
3.5 Executing the Generated Code 27
3.6 Some Other Cases. 29
3.6.1 Transitions without Events 29
3.6.2 Transitions with Conditions 29

4 Dynamic Model with Concurrency 31
4.1 Imntroduction Lo o 31
4.2 Air Condition System 32
4.3 Implementing a State Diagram 34
4.3.1 Treatment of Concurrency 35

4.4 Automatic Code Generation, 37
4.5 Executing the Generated Code 41

5 Dynamic Model with Multiple State Diagrams and Activity Charts 43

5.1 Introduction 43

6

5.2 The Elevator Example 44
5.3 Designing the Elevator System 44
5.4 The Controller Class 46
5.5 State Diagrams Lo 47
5.5.1 Converting a State Diagram into Code 47
5.5.2 Optimizing the Code 49
5.6 Activity Diagrams oL o 50
5.7 Classes having both State and Activity Diagrams 53
5.8 Automatic Code Generation, 54
5.8.1 Generating Code for Domain Classes 5%)
5.8.2 Generating Code for State Classes 56
Automatic Code Generating System: O-Code 58
6.1 Introduction Lo o 28
6.2 Transformer 29
6.2.1 The readFile Method 60
6.2.2 The interpretFile Method 61
6.2.3 The interpretLine Method 61
6.3 Optimizer 62
6.3.1 The setDefaultStates Method 62
6.3.2 The findEventsActions Method 62

6.4 Code Generator 63

7 Discussion 64
7.1 Discussion 64
7.2 Comparison with Rhapsody 66

7.2.1 Executing Image of the Code Generated by Rhapsody . . . 66
7.2.2 Executing Image of the Code Generated by O-Code 69
7.2.3 Comparing the Code Generated by Rhapsody and O-Code 69

8 Related Work 72
8.1 Code Generating CASE Tools 72
8.2 Implementing State Diagrams 73
83 Other 74

9 Conclusions 75

Acknowledgments 76

Bibliography 78

List of Figures

1.1 Overview of the HITO project 11
2.1 Overview of OMT object model notation 15
2.2 Overview of OMT dynamic model notation 16
3.1 Traditional approach to implement a state diagram 19
3.2 Proposed approach to implement a state diagram. 20
3.3 Asimple calculator L 21
3.4 Object model of the calculator 22
3.5 Dynamic model of the calculator 23
3.6 Dynamic model of the calculator in DSL format 24
3.7 Table representation of the state diagram for the calculator 25
3.8 Class structure of the generated code for the calculator 26
3.9 Transition without anevent 29
3.10 Transition with guard condition 30
4.1 Remote control device for air conditioner 32

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

3.2

5.3

0.4

6.1

6.2

7.1

7.2

Object model of the remote control device 33
State diagram of the Controller 33
Implementing a state diagram having state hierarchy 35
State diagram with concurrent states and its implementation in Java 36
State diagram of the Controller in DSL format. 37

Table created by O-Code for the state diagram of the Controller . 38

Part of the generated code for the air conditioner 39
Class structure of the generated code for the air conditioner . . . 40
Sequence of operations when the Mode button is pressed 42
Object model for the elevator simulation system 45
State diagram for Floorclass 47
Class structure of the Floor class and its companion classes 48
Activity diagram for Elevatorclass 52
Overall structure of O-Code system 59
Classes that represents the elements of a state diagram 60

Implementing a state diagram using data values to represent states 65

A conceptual view of the execution sequence in code generated by

Rhapsody and O-Code 68

List of Tables

7.1

7.2

7.3

Comparing the mechanisms used by Rhapsody and O-Code to im-

plement a state diagram 67

Comparing the compactness of the code generated by Rhapsody
and O-Code 70

Comparing the efficiency of the code generated by Rhapsody and
O-Code 71

Chapter 1

Introduction

Interest in object-oriented software development has grown rapidly over the last
few years. Object-oriented modeling and design is a new way of thinking about
problems using models organized around real-world concepts. Object-oriented
models are useful for understanding problems, communicating with application
experts, preparing documentation, and designing programs and databases. A
number of object-oriented methodologies [1, 2, 3, 4, 5] have been proposed that
cover the analysis, design and implementation phases of software development.
These methodologies suggest to create different models which show different as-
pects of a system during the analysis and design phases. The models are converted

into code during the implementation phase.

The Object Modeling Technique (OMT) uses three kinds of models to de-
scribe a system: the object model, describing the objects in the system and their
relationships; the dynamic model, describing the interactions among objects in
the system; and the functional model, describing the data transformations of the
system. The model that becomes the most important at the design and imple-
mentation stages is the dynamic model. Without the dynamic model, one does

not know the behavior of classes mentioned in the object model.

OMT and other object-oriented methodologies describe in detail the steps to

be followed during the analysis and design phases but fail to show how the analysis

and design models of a system shall be converted into implementation code. A big
problem in the development of a system through object-oriented methodologies
is that even after having created good models, it is difficult for a large fraction
of programmers to convert the models into executable code. It would be ideal to
have CASE tools that automatically generate or help to generate executable code
from the models. Most of the present CASE tools [6, 7, 8, 9] generate only header
files from the object model, which is comparatively easy due to its static nature.
To get an executable system, however, a user has to implement the dynamic and

other models of the system and combine the implementation code with the header

files.

1.1 Project Background

The present work is part of the HITO project which aims at automation of object-
oriented software development. The OMT methodology [1] has been used in
HITO project due to its support for rich graphical notation and consistency in
models throughout the analysis, design and implementation phases of software
development. Figure 1.1 shows the overview of the project. In HITO project, a
series of tools have been developed which support and automate object-oriented
analysis, design and implementation. Requirement Specifications List (RSL) lan-
guage and Design Schema List (DSL) language have been designed and used
for data exchanges among the tools [10]. The Automatic Modeling System [11],
parses problem statement in a natural language and extracts model elements,

e.g., classes, associations, events etc.

The sub-group of HITO project at IP-Lab, University of Tsukuba, has con-
centrated research on automatic layout of models and automatic code genera-
tions from object-oriented models. The dashed-line box in Figure 1.1 represents
the work carried out at the University of Tsukuba. The Automatic Layout Sys-
tem [12, 13] uses graph layout algorithms and automatically calculates a readable
layout from the model elements in RSL format. The output of the automatic lay-

out system is in DSL format used by other tools as input. The Code Generating

10

Problem statement . . OMT models in RSL format
. Automatic Modeling tool ..
(in natural language) (classes, associations, etc.)

E&utomatic Layout System

|

OMT diagrams in DSL format
(object diagram, state diagrams, etc.)

N

[Animation System j [Code Generating System j

Animation Java code

Figure 1.1: Overview of the HITO project

System [14, 15, 16, 17, 18] generates executable Java code from OMT models in
DSL format. The Animation System [19] produces animation from OMT models.

1.2 Automatic Code Generation

The present study reports that part of the project which covers automatic code
generation from object-oriented models. An attempt has been made to find meth-
ods to automatically generate implementation code from object-oriented models

in general and the dynamic model in particular.

11

1.3 Goal and Objectives

The final goal of this research is to automatically generate efficient implementa-

tion code from the object-oriented models. The general objectives are:

1. To find methods to generate efficient and easier to understand implemen-
tation code from the dynamic model in an object-oriented language like

Java.

2. To implement the proposed methods and develop a system to automatically

generate executable Java code from the object and dynamic models.

1.4 Organization

This thesis is organized as follows. Chapter 2 gives the fundamental knowledge
and definitions of the terms used in this work. Chapter 3 shows how code can
be generated from the dynamic model that is represented with a single state
diagram. Chapter 4 describes the treatment of concurrent states in state diagrams
and intra-object concurrency. Chapter 5 discusses implementation of the dynamic
model with many state diagrams. Active objects and multiple-thread concurrency
are also discussed. Chapter 6 explains the automatic code generating system, O-
Code. In Chapter 7, a discussion about the proposed approach is given. This
Chapter also gives a comparison of the developed system to Rhapsody. Chapter 8
presents the related work. Finally, in Chapter 9, the main results of our research

are summarized.

12

Chapter 2

Background

We have used the graphical notation of Object Modeling Technique (OMT), and
upto some extent Unified Modeling Language (UML), in various diagrams. Also
the input to our code generating system is in Design Schema List (DSL) language

format. This chapter gives a short description of OMT, UML and DSL.

2.1 Object Modeling Technique (OMT)

Object Modeling Technique (OMT) [1, 20, 21, 22, 23, 24, 25, 26, 27] is an object-
oriented software development methodology which extends from analysis through
design to implementation. First an analysis model is built to abstract essential
aspects of the application domain without regard to eventual implementation.
This model contains objects found in the application domain, including a de-
scription of the properties of the objects and their behavior. The design decisions
are made and details are added to the model to describe the implementation.

Finally the design model is implemented in a programming language.

OMT describes a graphical notation for expressing object-oriented models.
Application-domain and computer-domain objects can be modeled using the same

notation. A great advantage of OMT is that the same seamless notation is used

13

from analysis to design to implementation so that information added in one stage

of development need not be lost or translated for the next stage.

2.1.1 Three Models

The OMT methodology uses three kinds of models to describe a system: the
object model, describing the objects in the system and their relationships; the
dynamic model, describing the interactions among objects in the system; and the

functional model, describing the data transformations of the system.

The Object Model

The object model describes the static structure of the objects in a system and their
relationships. The object model contains object diagrams. An object diagram is
a graph whose nodes are classes and whose arcs are relationships among classes.

Figure 2.1 summarizes the notation used in the object model.

The Dynamic Model

The dynamic model describes the aspects of a system that change over time. The
dynamic model is used to specify and implement the control aspects of a system.
The dynamic model contains state diagrams. A state diagram is a graph whose
nodes are states and whose arcs are transitions between states caused by events.
A state diagram may contain nested states or substates. In the case of OR-type
substates, only one of the substate can be active at a given time when their
superstate is active. In the case of AND-type substates, all the substates become
active simultaneously whenever their superstate gets activated. An entry action
is executed whenever the corresponding state is entered. It is indicated by writing
the action-name after the string “entry/” inside the state node. Similarly, an exit
action is executed whenever the corresponding state is exited. It is indicated by

writing the action-name after the string “exit/” inside the state node. Internal

14

Class: Association:

Class-1 Association Name Class-2

Class Name

f

attribute Multiplicity of Associations:
attribute:data-type
attribute:data-type = init_value

: Class Exactly one
operation

operation (arg_list) : return_type

Class Many (zero or more)

Generalization (Inheritance):

SuperClass

() Class Optional (zero or one;

iE

Class One or more

‘ SubClass-1 ‘ ‘ SubClass-2 ‘ 1-2,4 Numerically specified
Aggregation: Aggregation (alternate form):

AssemblyClass

AssemblyClass

<
<>

[®

‘ Part-1-Class ‘ ‘ Part-2-Class ‘

Part-1-Class Part-2-Class

Figure 2.1: Overview of OMT object model notation

events cause some actions to be executed without changing the state. Such events
are written inside the state along with the corresponding action separated by a

slash. Figure 2.2 summarizes the notation used in the dynamic model.

The Functional Model

The functional model describes the data value transformations within a system.
The functional model contains data flow diagrams. A data flow diagram repre-
sents a computation. A data flow diagram is a graph whose nodes are processes

and whose arcs are data flows.

15

Event causes Transition between States:
State-1 event State-2
Guarded Transition:

Actions and Activity while in a State:

Event with Attribute:
event(attribute)

Action on a Transition:

ion
State-1 event / actio State-2

Initial and Final States:

State Name
entry / entry-action

do: activity-A
event-1 / action-1
exit / exit-action

InitialState FinalState

Concurrent Subdiagrams or
AND-type Substates:

State Generalization (Nesting) or
OR-type Substates:

(Superstate
Superstate
event] ANDstatel ANDstate2 eventl
State-1 State-1 State-3
v ! event2
event2 i event3 State-2 State-4 >
v

Figure 2.2: Overview of OMT dynamic model notation

2.2 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is the successor to the wave of object-
oriented analysis and design (OOA&D) methods that appeared in the late ‘80s
and early ‘90s. It unifies the methods of Booch [2, 28], Rumbaugh (OMT), and
Jacobson [4]. The UML is called a modeling language, not a method. Most
methods consist, at least in principle, of both a modeling language and a process.
The modeling language is the (mainly graphical) notation that methods use to
express designs. The process is their advice on what steps to take in doing a
design. UML uses many extra diagrams, in addition to the diagrams of OMT.
One of the diagrams which interests us is the activity diagram. An activity
diagram is a special case of a state diagram in which states are action states

(activities) and in which transitions are triggered by completion of the actions in

16

the source states.

2.3 Specification Languages (RSL and DSL)

Requirements Specification List (RSL) language and Design Schema List (DSL)
language [10] are specification languages designed to facilitate data exchanges
among tools. RSL describes OMT models in an abstract way without any graph-
ical information. It only gives the model elements that form a model. For exam-
ple, the names of the classes, the constituent classes of an association, etc. DSL,
on the other hand, describes the diagrams representing the OMT models in full
detail. It includes the graphical information of the model elements. For example,
the location and size of the node that represents a class, the end points of the

line that represents an aggregation, etc.

17

Chapter 3

Dynamic Model with a Single
State Diagram

3.1 Introduction

Though a real system has a dynamic model with many state diagrams, the be-
havior of a small system can be represented by a single state diagram [14]. As
described by Rumbaugh [20, 21, 26], there is normally a controller class that
represents the entire system and keeps the main flow of control. Our investiga-
tion has made us to believe that when the dynamic model is represented by a
single state diagram, the state diagram actually represents the behavior of the
controller class. Users interact with the system through its user interface compo-
nent, which sends messages to the controller class. The messages become events

for the controller and it responds accordingly.

3.2 Converting a State Diagram into Code

To automatically generate implementation code from the dynamic model, first

we looked for methods that are used to convert a state diagram into software

18

code. The traditional approach to implement a state diagram is to represent it
as a table and write an interpreter to execute it [29, 20| (Figure 3.1). The table
consists of a list of states, each of which has a table of transitions. Each time an
event occurs, the interpreter searches the current state for a transition on that
event. If a transition is found, it is executed and the current state is changed,
otherwise the event is ignored. The traditional approach is suitable for simple

state diagrams which do not contain state hierarchy.

el Event
n State |Event | NextState
el
el
e2
D | &
e3

NewState

oAw> >
AP go=

(a) State Diagram. (b) Table-interpreter implementation.

Figure 3.1: Traditional approach to implement a state diagram

Our objective is to find a method to convert the state diagram into actual code
that can directly be executed without the need of an interpreter. We propose an
object oriented approach to implement a state diagram. For each state, a class
is created that implements the state-specific behavior. We call such classes as
state classes. The key idea in our approach is to introduce an abstract class
(say State) to represent the states of the domain class (say Controller) which the
state diagram belongs to. The State class declares an interface common to all
state classes and its purpose is to make all the state classes able to accept every
event of the state diagram. Normally, there is only one object of one of the
state classes that is active at a given time and represents the current state when
the application is running. This object is pointed to by an attribute (say cs) in
the Controller class, which represents the entire application. Each time an event

occurs, it is translated into an operation call on the current state object (cs).

19

3.2.1 Dealing with State Hierarchy

In state diagrams, there are often substates within superstates, where the super-
states have transitions that are common to their substates. We observed that
the state hierarchy in a state transition diagram resembles to the class hierarchy
(inheritance tree) in an object-oriented program. In the former, substates inherit
the behavior of their super-state, while in the latter, subclasses inherit the be-
havior of their parent class. In our approach, where each state of a multi-state
class is implemented as a class, substates become subclasses of the class for the
superstate (Figure 3.2). The superclass implements the behavior specific to the
superstate and the subclasses implement the behavior specific to the substates.
Thus by using the inheritance mechanism, we became able to extend our model
for implementing state diagrams to also accommodate state hierarchy. Here we

restrict our discussion to only OR-type substates.

class State {
public e1(){ }
public e2(){}
public e3(0){ }}
I /I cs means Controller.cs
lass D extends State {
3 c
C e, A public el1(){cs=new B();} }
C D
A | > class C extends State {

Y e2 D e3() el() public e3(){cs=new D();}}

class A extends C {
public e1(){cs=new B();}
B - el A B public e2(){cs=new D();}}
B el(e2()

e2() class B extends C {
public e2(){cs=new A();}}
// initialize state
State c¢s = new A();
/levents as operation-calls
cs.e2();cs.el();cs.e3;

(a) State Diagram with (b) States as classes. (c) Equivalent code (Java).
embedded states.

Figure 3.2: Proposed approach to implement a state diagram.

20

3.3 A Simple Calculator

We use an example to demonstrate our approach. Suppose we want to develop a
program for a simple interactive calculator. Figure 3.3 shows the appearance of

the calculator. We suppose that the calculator has the following functions:

CLEAR |

Figure 3.3: A simple calculator

1. Simple calculations; 10 + 25 = 35.
2. Continuous calculations involving many operators; 10 « 3 — 5 4+ 10 = 35.

3. After getting an answer by clicking on =, any subsequent click on = re-
peats the previous operation, using the result as operandl; 104+ 4 =====

generates the sequence 14 18 22 26 30.

4. A calculation can be aborted by clicking on CLEAR, a fresh calculation can
then be started by entering operandl.

21

3.3.1 Calculator: Object Model

Figure 3.4 shows the object model for this application. Display and ButtonPanel
classes are directly related to the Controller class. Display represents the small
display area of the calculator where the values are being entered and the computed
result is shown. ButtonPanel represents the remaining part of the calculator
containing various buttons, which the user clicks while using the calculator. After
receiving the set Value message from the Controller, the Display object changes its
value. The ButtonPanel object is an aggregation of various Button objects, each
of which has a name. When a button is clicked by the user, it becomes an event
for the system. The ButtonPanel object then sends an appropriate message to

the Controller.

Display Controller ButtonPanel

value operand 1

operand2
setValue() operator
result

Button

name

Figure 3.4: Object model of the calculator

3.3.2 Calculator: Dynamic Model

The class having the most important dynamic behavior is the Controller. It has
four attributes, namely operandl, operand2, operator and result. These attributes
define the state of the Controller. The Controller behaves differently in different
states. Figure 3.5 shows the complete behavior of the Controller in the form of
a state diagram. In this diagram, possible events for the system are digit(n),
operator(c), equal and clear. Parameter n can take a digit character (0 to 9) and
parameter ¢ can take one of the four operator symbols (+, -, *, /). These events

come as messages from the ButtonPanel object whenever some button is clicked.

22

To keep the names of actions (and corresponding methods) simplified, we have

used O1 for operandl, O2 for operand2, Op for operator and R for result.

digit(n) /setO1

® - Initial
entry/initialize

clear

Running

Final GettingO1

entry/findResult

digit(n)/adjustO1

operator(c) /setOp

digit(n) /setO2 (
* GotO1

operator(c) /findRsetO1

equal /setOlasR

equal

GettingO2
digit(n)/adjustO2

Figure 3.5: Dynamic model of the calculator

3.4 Automatic Code Generation

We have developed a system that implements the proposed method and automat-
ically generates executable Java code [30] from the dynamic model that consists
of a simple state diagram. The input to the system is a specification of the state
diagram in Design Schema List (DSL) language. Figure 3.6 shows the dynamic
model of the calculator in DSL format. The system works in two steps. First,
it reads the DSL file and identifies various components of the state diagram. It

makes a table and records all the information properly, such as various states,

23

their substates, events and transitions. Figure 3.7 shows the table created by the
system from the DSL file of the calculator (Figure 3.6). In the second step, the
system takes information from the table and generates Java code following our
proposed method of converting a state diagram into code. Figure 3.8 shows the
class structure of the generated code. The system follows the following rules to

convert a state diagram into code:

OSTD(gl)[nodes{n1,n2,n3,n4,n5,n6},arcs{al,a2,a3,a4,as5,a6,a7}];

OSTDN(n1)[loc(140:50),size(60:30),
ostdnAttr(name:Initial,entry/initialize)];
OSTDN(n2)[loc(50:100),size(220:180),
ostdnAttr(name:Running,substates{n3,n4,n5,n6})];
OSTDN(n3)[loc(190:130),size(60:30),0stdnAttr(name:GettingO1,
event(name:digit,arg(char:n))/adjustO1)];
OSTDN(n4)[10c(200:220),size(40:30),0stdnAttr(name:GotO1)];
OSTDN(n5)[loc(80:220),size(60:30),0stdnAttr(name:Getting 02,
event(name:digit,arg(char:n))/adjustO2)];
OSTDN(n6)[loc(80:130),size(60:30),
ostdnAttr(name:Final,entry/findResult)];

OSTDA(al)[from(n1,side:RIGHT,off:15),to(n3,side: TOP,off:40),
ostdaAttr(name:digit,arg(char:n)/setO1)];

OSTDA (a2)[from(n3,side:BOTTOM,o0ft:20),to(n4,side: TOP,off: 15),
ostdaAttr(name:operator,arg(char:c)/setOp)];
OSTDA(a3)[from(n4,side:LEFT,off:15),to(n5,side:RIGHT,off:15),
ostdaAttr(name:digit,arg(char:n)/setO2)];
OSTDA(a4)[from(n5,side:LEFT,off:15),to(n6,side:LEFT,oft: 15),
ostdaAttr(name:equal)];

OSTDA(a5)[from(n6,side:BOTTOM,off: 15),to(n6,side:BOTTOM,o0ff:45),
ostdaAttr(name:equal/setOlasR)];
OSTDA(a6)[from(n2,side:TOP,off:30),to(n1,side: LEFT,off:22),
ostdaAttr(name:clear)];

OSTDA(a7)[from(n5,side:BOTTOM,off: 15),to(n5,side:BOTTOM,o0ff:45),
ostdaAttr(name:operator,arg(char:c)/findRsetO1)];

Figure 3.6: Dynamic model of the calculator in DSL format

1. A class is defined for each state. The name of the state becomes the name of
the class. If this state is a substate of another state then the class becomes
a subclass of the class for that superstate. Otherwise, it is subclassed from

the ControllerState class, which is an abstract class for all state classes.

2. Each event on a state becomes a method in the corresponding class. The
method has the same name as the event. If the event has parameters, the
corresponding method is also defined with parameters. Body code for the

method is also generated. If the event is an internal one, the body code

24

State State Entry |Super- | Sub- Transitions Internal Events
ID Name state states
ID Event Action |Next Event Action
State
Name | Argument Name | Argument
Name | Type Name| Type
nl Initial initialize al |digit n |[char |setOl n3
. n3 n4
n2 | Running 15 16 a6 |clear nl
n3 | GettingOl n2 a2 |operator | ¢ |char |setOp n4 |digit n char |adjustO1
n4 | GotOl n2 a3 |digit n |char |setO2 nS
5 a4 |equal n6
GettingO2 n2 digit n char |adjustO2
a7 |operator | ¢ |char |findRsetOl | nS
n6 | Final findResult n2 a5 |equal setOlasR n6

Figure 3.7: Table representation of the state diagram for the calculator

just contains a method call which executes the action associated with that
internal event. If the event has a transition, the body code contains the

following:

(a) A method call to execute the ezit action of the current state.

(b) A method call to execute the action related to the transition.

the new state.

(d) A method call to execute the entry action of the new state.

If the event contains parameters, these are passed to the methods of the
corresponding actions when they are called. The above code of (a) to (d)
comprises the transition code. From now on, we shall refer to it by transition
code. In Figure 3.8, to save space the methods that implement transitions

are indicated by a right-headed arrow mark. Code for one such method,

operator(char c) in class GettingO1, is shown in a separate box.

25

(c) Code for deleting the current state object and creating an object of

Controller

ControllerState state

setO1(char n)
initialize()
adjustO1(char n)
setOp(char c)
setO2(char n)
adjustO2(char n)
findRsetO1(char c)
setOlasR()
findResult()

ControllerState

entry()={}
exit()={}

digit(char n)={}
operator(char ¢)={ }
equal()={}
clear()={}

main(String args[])

A

Running

Initial

clear() —»

A

entry()={findResult();}
equal() —*

entry()={initialize();}
digit(char n)

—

Final

GettingO1 GotO1

digit(char n)={adjustO1(n);}
operator(char c)

digit(charn)

—> @

y Getting02

exit();

Controller.setOp(c);
Controller.state=new GotO1();
Controller.state.entry();

digit(char n)={adjustO2(n);}
equal() —»

operator(charc) —»

Figure 3.8: Class structure of the generated code for the calculator

3. If a state has entry/exit actions, then methods having the names entry and
exit, respectively, are defined in the corresponding class. Bodies of these

methods just contain a method call to the corresponding entry /exit actions.

4. All actions in the state diagram become methods in the Controller class. If
their corresponding events have parameters, then these methods are defined
with those same parameters. No code is generated for the bodies of these
methods. A user has to insert implementation code to run the application.
The reason for inserting all action operations in the Controller class is that
these operations can contain messages to other objects of the application

that are described in the object model. As the Controller class has references

26

to almost all important classes, it is the most suitable place.

5. ControllerState is an abstract class. This class is created only to provide
a common interface to all state classes. It contains declarations of oper-
ations for all events in the state diagram. Entry and exit operations are
also declared. No implementation code for operations is present here. Each
subclass has its own implementation code for its own events. Due to the
presence of the ControllerState class, the generated code is able to use poly-
morphism and select a method at runtime for execution when an event has

occurred.

3.5 Executing the Generated Code

The code, generated by our system, does not represent the whole application. It
represents that part of the system which is described by the dynamic model, i.e.,
control and sequences of operations. To execute this, we have to provide code
for other parts of the system, particularly, code for the classes that are described
by the object model. Internal code for the actions should also be provided since
a dynamic model just contains names of the actions. In the remaining part of
this section, we show how the code generated for the calculator example can be

executed.

Figure 3.8 is the class structure of the code generated from the dynamic model
of the system. The user does not have to care about this diagram. It is shown
here to help understanding the generated code. This code represents the main
flow of control in the application and can be executed by just providing the body
codes for the methods of the Controller class and definitions of the Display and
ButtonPanel classes. The body codes for other methods are already generated

automatically.

The Controller class has an attribute state of the type ControllerState. The
value of this attribute always shows the current state of the Controller. Whenever

an event occurs, a message is sent to the object pointed to by the state variable.

27

If there is an implementation for the operation in the class (or superclass) of the
object, it will be executed, otherwise the abstract method for that operation in
the ControllerState class will get executed, which does nothing. To execute the

generated code of this particular example, we proceeded as;

1. We defined Display and ButtonPanel classes, which came from the object
model of the calculator. Using the Abstract Window Toolkit (AWT) classes
of the Java language, these definitions were quite simple. In response to a
button click, the ButtonPanel object sends a certain message to the Con-
troller class. For example, if button “5” is clicked, it will send the message
digit('5’) to the object pointed to by Controller.state. The message becomes

an event for the Controller.

2. We added four attributes in the Controller class, namely, operandl, operand?2,
operator and result, because they are present in the object model. In ad-
dition, we inserted an attribute display, which is a reference to the Display
object, since there is an association between the Controller and the Display
classes. Whenever the value of operandl, operand2 or result is changed, the

Controller sends a message to the Display object to change its value.

3. We provided body code for all the methods of the Controller class. Except

the main() method, all are actions in the dynamic model of Figure 3.5.

4. We wrote code for the main() method of the Controller. It just initializes the
display and state attributes and activates a window to show the appearance

of the calculator.

Note that to execute the application, almost all the changes are needed in the
Controller class. The ControllerState class and its subclasses remain unchanged.
Now as the Controller class contains the main() method, it can directly be exe-
cuted by the Java interpreter. We run the program and it really worked in all

the cases explained in Section 3.3.

28

3.6 Some Other Cases

There are some cases that are not covered in the calculator example, but our
system can generate code for them. We want to mention these cases without

giving complete examples, and show how our system will generate code for them.

3.6.1 Transitions without Events

Sometimes there are transitions that have no events. Such transitions are exe-
cuted as soon as the current state finishes its own activity. If a state has such
transition, the transition code is placed in the body of entry operation, after the
method call to the entry action, as shown in Figure 3.9. In this way, the transition

code is executed just after the state’s entry action is completed.

Statel

> State2

entry/actionl

Generated code for method
entry() inclass Statel

public void entry(){
action1();
state.exit();
state = new State2();
state.entry();

}

Figure 3.9: Transition without an event

3.6.2 Transitions with Conditions
There are some transitions that have a guard condition on them. Such transitions

can only be executed if the associated event occurs and at the same time the

associated condition is true. As shown in Figure 3.10, the entire transition code

29

for such transition is placed inside an if statement. So when the event occurs, the
corresponding operation for that event will get executed but the transition will
not be executed unless the condition is true.

Statel myEvent/myAction [a<b] R State2

Generated code for method
myEvent() inclass Sratel

public void myEvent(){
if (a<b){
myAction();
state.exit();
state = new State2();
state.entry();
}
}

Figure 3.10: Transition with guard condition

30

Chapter 4

Dynamic Model with

Concurrency

4.1 Introduction

As already described, the dynamic model is represented by a set of state transi-
tion diagrams each of which show the behavior of a particular class of objects.
In the previous chapter, code generation from a simple state diagram without
concurrency is discussed. A state diagram can contain concurrent states (also
called AND-states) that become active simultaneously whenever their superstate
gets activated. Concurrent states not only represent the inherent parallelism in
some of the objects but also enable compact descriptions of complex state dia-
grams [31, 32]. This chapter addresses the issue of concurrency in state diagrams
and how the proposed approach deals with concurrency while generating code

from a state diagram [15, 16].

31

4.2 Air Condition System

We use an example throughout this chapter to simplify the explanation of our
approach. Consider an Air Conditioner that is operated with a remote control
device (Fig. 4.1). The remote device contains several buttons namely, Mode,
Speed, 1, 2, 3, 4 and On/Off; and three rectangles which show the current state
of the air conditioner. When the air conditioner is off, the display area (three

rectangles) shows nothing. Suppose we develop software for this system.

[*]] Invertor Air Conditionar

=> Cooler
Mode
Heater
L oty
>> Medium Speed
High
1 2
2 Wind Direction
3 4
OnlOff

Figure 4.1: Remote control device for air conditioner

Figure 4.2 shows the object model for this application. The Remotelnterface
class, which maintains one object instance of the DisplayArea class and seven
object instances of the Button class, is directly related to the Controller class,
which keeps control of the entire system [20, 21, 26]. Whenever some button is
pressed, the Controller is informed by the Remotelnterface by sending a particular
message. The response from the Controller depends on its current state. Figure 4.3
shows the behavior of the Controller in the form of a state diagram. Possible events

(in-coming messages) for the Controller are: onOffBut, modeBut, speedBut and

32

dirBut(n), where parameter n can take an integer value from 1 to 4. The text
on the right side of the slash (/) on a transition represents action that will get

executed when the transition is fired.

Controller Remotelnterface

Button

DisplayArea

name

Figure 4.2: Object model of the remote control device

Operating
/setCooler ? Mode
modeBut/setHeater
Cooler L " Heater
modeBut/setCooler
onOffBut
’—' Speed
/setLow speedBut speedBut
off /setMedium /setHigh
Medium "l High
onOffBut
/setOff speedBut/setLow
Direction
/setDir ShowDirection
dirBut(n)/setDir(n)

Figure 4.3: State diagram of the Controller

There are two possible states: Off and Operating. These states are activated
alternatively whenever an onOffBut event occurs. The Operating state is a com-
bination of three concurrent states or AND-substates [33, 34, 35]), namely Mode,

Speed and Direction. So they all become active at the same time whenever the

33

Operating state gets activated. Each of the concurrent states has a number of
OR-substates 33, 34, 35], e.g., Mode has substates Cooler and Heater. Only one
of the OR-substates can be activated at a given time. A transition from a solid

circle to a state shows that the state is the default one.

4.3 Implementing a State Diagram

As shown in the state diagram (Fig. 4.3), Controller responds to requests from
other objects differently depending on its current state. For example, the effect
of a modeBut request depends on whether the Controller is in Off state, Cooler

state or Heater state.

Using our approach discussed in the previous chapter, we can only convert
a state diagram that does not have concurrent states into implementation code.
For example, Figure 4.4 shows a simplified version of Figure 4.3 (without con-
current states) along with the resulting class structure and Java code [30]. We
use the prefix “C_” in class names representing the word “Controller”. The class
Controller maintains an attribute state of C_State type which points to an instance
of a subclass of C_State and represents the current state of the Controller. The
Controller delegates all state-specific requests to the state object. The state object

performs operations particular to the current state of the Controller.

As can be seen in the implementation code (Fig. 4.4), each time the Controller
changes state, the value of state gets changed. For example, when the Controller
goes from Off to Cooler, an instance of the C_Cooler class will replace the instance
of the C_Off class that was the current state object. The state object thus looks
like changing its class. This is valid because of the substitution rule that allows a
class instance to replace its superclass instance [36]. In other words, an instance
of a subtype can always be used in any context in which an instance of a super

type was expected.

Cooler and Heater are substates of Mode. When Mode is active, either Cooler

34

Controller 7 class Controller{
. Off C_State static C_State state;
T C_State state onOffBut() void onOffBut(){
state.onOffBut(); }
onOffBut() modeBut0) static void setOff(){...}
onOffBut modeBut) | }
/setOff onOffBut setOff() class C_State{
setHeater() void onOffBut(){}
setCooler() void modeBut(){}}
class C_Off extends C_State{
‘ ‘ void onOffBut(){
Mode Controller.state=
C_Off C_Mode new C_Cooler();}}
.—> Cooler onOffBut() onOffBut() C\lzzsi(sj S;(l;/lf(f)‘gi;);;ends C_State{
‘ Controller.setOff();
modeBut modeBut Controller.state =
/setCooler /setHeater | | new C_Off();}}
' T T class C_Cooler extends C_Mode{
C_Cooler C_Heater void modeBut(){
(Heater] modeBut() modeBut() Controller.setHeater();

Controller.state =

new C_Heater();}}
class C_Heater extends C_Mode{
void modeBut(){...}}

(a) State diagram with
state heirarchy. (b) Class structure. (c) Java code.

Figure 4.4: Implementing a state diagram having state hierarchy

or Heater will be active too. Both Cooler and Heater, when active, respond to
the onOffBut event because there is a transition on this event from the superstate
Mode. C_Cooler and C_Heater become subclasses of the C_Mode class. C_Mode
class contains implementation for the onOffBut() operation which is inherited by
both of its subclasses. The subclasses contain implementation for the operation
modeBut().

4.3.1 Treatment of Concurrency

As discussed earlier, we represent an active state by an object instance. For
concurrent states, we need a mechanism that guarantees the creation of as many
objects as the number of the concurrent states whenever their superstate becomes
active. That is why, we represent the superstate of AND-states as a composite

class that owns objects of other classes.

The composite class maintains objects corresponding to each of the AND-

35

states. When the superstate of AND-states becomes active, the corresponding
composite class gets instantiated. The composite object then instantiates its
own state objects. The instantiation of the composite class thus guarantees the
instantiation of the classes that correspond to the AND-states. This behaves like
activating many states simultaneously. Similarly, when the composite object is
deleted, all the objects it owns are also deleted. This behaves like leaving all the

AND-states at once when their superstate becomes inactive.

As an example, Figure 4.5 shows part of the state diagram of the air con-
ditioner’s Controller and the equivalent implementation code. C_Operating is a
composite class and holds objects of type C_Mode and C_Speed classes. C_Mode
and C_Speed classes, representing the two concurrent states, are abstract classes
and serve as interface classes for their own subclasses. C_Cooler, C_Heater and

C_Low, C_High become concrete subclasses of C_Mode and C_Speed respectively.

C_Operating

class C_Operating {
C_Mode mode = new C_Cooler();

Operating C_Speed speed = new C_Low();
modeBut(){mode.modeBut();}
Mode speedBut(){speed.speedBut(); } }
modeBut class C_Mode {modeBut(){}}
Cooler Heater
modeBut class C_Cooler extends C_Mode {

modeBut(){mode=new C_Heater();}}

class C_Heater extends C_Mode {

Speed
pee modeBut(){mode=new C_Cooler();}}

speedBut
«— | High
speedBut

(a) State diagram with
concurrent states. (b) Class Structure (c) Java code.

class C_Speed {speedBut(){ }}
C_High class C_Low extends C_Speed {
- speedBut(){speed=new C_High();} }

class C_High extends C_Speed {
speedBut() {speed=new C_Low();}}

Figure 4.5: State diagram with concurrent states and its implementation in Java

As can be seen in the implementation code (Fig. 4.5), the composite class
delegates the requests (events) on which there are transitions within the AND-
states to the corresponding component state objects (e.g., modeBut is delegated to

mode state object and speedBut is delegated to speed state object). For transitions

36

that are going out of the superstate of the AND-states (e.g., Operating), the
composite class (C_Operating) provides the implementation code and does not

forward them to the substate objects.

4.4 Automatic Code Generation

Our code generation system, O-Code, follows the above approach and automat-
ically generates implementation code from the dynamic model. The input to
the system is a specification of the dynamic model in Design Schema List (DSL)
language [10] (Figure 4.6). After reading the DSL file, the system first identifies
various states, their substates, transitions and internal events. It makes a table
(Figure 4.7) to properly record all the information. The system then generates
executable Java [30] language code (Figure 4.8) from the table. Figure 4.9 (solid
lines portion) shows the class structure of the generated code for the dynamic
model (Figure 4.3) of the air conditioner. The detailed rules for code generation

are as follows:

OSTD(gl)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14,n15},
arcs{al,a2,a3,a4,a5,a6,a7,a8,a9,al0,al1}];

OSTDN(n1)[loc(57:150),size(10:10),0stdnAttr(name:START)];
OSTDN(n2)[1loc(90:207),size(57:43),0stdnAttr(name: Off)];
OSTDN(n3)[loc(187:37),size(393:366),0stdnAttr(name:Operating,concurrent{n4,n8,n13})];

OSTDN(n4)[loc(187:67),size(393:96),0stdn Attr(name:Mode,substates { n5,n6,n7 })];
OSTDN(n5)[1oc(207:120),size(10:10),0stdn Attr(name:START)];

OSTDA(al)[from(n1,side:BOTTOM,off:5),to(n2,side: TOP,off:28)];
OSTDA(a2)[from(n2,side:TOP,o0ff:45),to(n3,side: LEFT,off:160),ostdaAttr(name:onOffBut/setOn)];

Figure 4.6: State diagram of the Controller in DSL format.

1. The Controller class, with an attribute state of type C_State, is defined.
All state-specific requests from other objects, i.e., the events in the state
diagram, become methods in the Controller class. The body code for these
methods just contain a method call to the same method in the state object,

which means that the requests are delegated to the state object. All actions

37

State State Name Substates Transitions Internal
D *=default *=concurrent Event Action Next | Event
State

n2 Off (*) onOffButton n3

n3 Operating n4,n8,n13(*) onOffButton | setOff n2

n4 Mode n6,n7

n6 Cooler (*) modeButton | setHeater n7

n7 Heater modeButton | setCooler n6

n8 Speed nl0,nl1,n12

nl0 Low (%) speedButton | setMedium | nll

nll Medium speedButton | setHigh nl2

nl2 High speedButton | setLow nl0

nl3 Direction nl5

nl5 ShowDirection (*) dirButton(n)

/setDir(n)

Figure 4.7: Table created by O-Code for the state diagram of the Controller

in the state diagram become methods in the Controller class. A user has to
insert body code for these methods. The main method is also declared in

the Controller class.

2. To provide a common interface to all state classes, an abstract class, C_State,
is defined. It contains empty declarations of operations for all events in
the state diagram. Each state class has implementation code for its own
events (operations). States in a state diagram may have entry and/or ezit
actions, which are executed whenever the corresponding state is entered
or exited. Such actions are implemented as entry and exit methods in the
corresponding state classes. C_State provides empty declarations for entry

and exit operations.

3. A class is defined for each state (we call such classes as state classes). The
name of the class is derived from the name of the state. If the state is a
substate of another state then the class becomes a subclass of the superstate
class. Otherwise, it is subclassed from the C State class. If the state has

entry/exit actions, methods having the names entry and exit, respectively,

38

class Controller {
public static C_State state;
public void onOffBut(){state.onOffBut(); }
public void modeBut(){state.modeBut(); }

public static void setOff(){...}
public static void setCooler(){...}

class C_State {/* Empty declarations for entry(), exit() and all methods of the subclasses of C_State*/}
class C_Operating extends C_State {
static C_Mode mode; static C_Speed speed; static C_Direction direction;
void entry() {Controller.setCooler();mode=new C_Cooler(); Controller.setLow();
speed=new C_Low();Controller.setDir();direction=new C_ShowDirection();}
void exit(){mode.exit();speed.exit();direction.exit(); }

void onOffBut() {exit();Controller.setOff();Controller.state=new C_Off();Controller.state.entry();}
void modeBut() {mode.modeBut();}

class C_Mode {/* Empty declarations for entry(), exit() and all methods of the subclasses of C_Mode*/}
class C_Heater extends C_Mode {

void modeBut() {exit();Controller.setCooler();C_Operating.mode = new C_Cooler();
C_Operating.mode.entry(); } }

class C_ShowDirection extends C_Direction {
void dirBut(int n) { Controller.setDir(n);}}

Figure 4.8: Part of the generated code for the air conditioner

are defined in the class. Bodies of these methods contain a method-call to
the corresponding entry/exit actions. All the state classes are defined in the

same manner except the following two types which are defined differently:

(a) If the state is a superstate of AND-substates (e.g., Operating in Fig. 4.3),
the class becomes a composite that contains as many objects as the
number of the substates. For each substate, an attribute is defined.
The name and type of the attribute are derived from the name of
the substate. An entry method is defined which creates objects rep-
resenting the default states within each of the concurrent substates
and initializes each of the attributes with these objects (e.g., mode is
initialized with an instance of C_Cooler class). Also, an exit method
is defined which contains a call to the exit method of each of the at-
tributes. For each event on the substates, a method is defined that
calls the method(s) for that event defined in the class(es) for the sub-
state(s).

39

Remotelnterface Controller - C_State

T
C_Off C_Operating
DisplayArea Button <%

\ \ |
C_Mode C_Speed C_Direction

T

C_Cooler C_Heater C_ShowDirection

C_Low C_Medium C_High

Figure 4.9: Class structure of the generated code for the air conditioner

The point to be noted here is that the system supports synchronized
events in AND-substates. If there are transitions in many AND-
substates for a single event, there will be implementation code in each
of the substate classes, each of which will be called from the single

method in the superstate class for the event.

(b) If the state is an AND-substate (e.g., Mode, Speed and Direction in
Fig. 4.3), the class becomes an abstract class and serves as an interface
for its own substate classes. In addition to the entry and exit opera-
tions, it contains empty declarations for operations corresponding to

the events of its substates.

4. An event on any state becomes a method in the corresponding class. Body
code for the method is also completely generated. If the event is an internal
one, the body code contains a method-call which executes the associated
action. If the event has a transition, the body code also contains: (i) call
to the exit operation of the current state, (ii) code for deleting the current
state object and creating an object of the new state class, and (iii) call to

the entry operation of the new state.

40

4.5 Executing the Generated Code

Figure 4.9 shows the class structure of the entire application for the air con-
ditioner. Here, the solid-line boxes represent the classes that are generated by
O-Code from the dynamic model of the air conditioner and the dashed-line boxes
represent the domain classes, which came from the original object model. The
clients of the Controller class do not need to know about the classes that imple-
ment the state-specific behavior of the Controller. They simply send their requests
to the Controller object. The Controller object then forwards the same requests

to its state object, which entertains them.

The Controller class has also an object of Remotelnterface class that is instan-
tiated in its main method. While instantiating the Remotelnterface object, the
Controller object passes itself as an argument so that the Remotelnterface object
can later send requests to the Controller object whenever some button is pressed
by the user. These requests from the Remotelnterface object become events for

the Controller.

After compiling the code, when the Controller class is executed from the com-
mand line, the main method gets executed, and a Remotelnterface object is cre-
ated. The Remotelnterface object displays itself and the interface shown in Fig-
ure 4.1 appears. Now when the user clicks some button, a message is sent to
the Controller object. For example, when Mode button is clicked, the modeBut
message will be sent. The Controller will send the same message to its state ob-
ject (Figure 4.10). If the current state object contains an instance of C_Off class
[case (a)], the empty modeBut method in the C State class will be executed be-
cause there is no implementation for the modeBut operation in C_Off class. If, on
the other hand, the current state object contains an instance of the C_Operating
class and also the mode object of the the C_Operating contains an instance of the
C Heater class [case (b)], the modeBut method of the C_Operating class will get
executed. This method sends the same message to the mode object (an instance
of C_Heater class in this case). The modeBut method of the C Heater class will

get executed. This method first calls the setCooler method of the Controller class

41

and then update the mode object with a new instance of the C_Cooler class. The
setCooler method of the Controller class, which corresponds to the setCooler ac-
tion in the state diagram of the Controller, sends a setMode(“COOLER") to the

Remotelnterface object.

modeBut() modeBut()
:Remotelnterface :Controller state:C_Off o

The abstract method modeBut ()
in class C_State is called,
state does not change.

(a) When the current state is Off

modeBut()]
:Remotelnterface :Controller state:C_Operating mode:C_Heater

modeBut () in class C_Heater
is executed, state changes to
Cooler (Operating) .

(b) When the current state is Heater (Operating)

Figure 4.10: Sequence of operations when the Mode button is pressed

To summarize, the clients of the Controller class, e.g., the Remotelnterface
object, send messages to the Controller that become events for it. The state object
of the Controller, representing its current state, handles all the occurring events.
While the events being handled, the state of the Controller may change and some
method of the Controller class that represent actions in the state diagram may
get executed. The action methods usually send messages to the clients of the

Controller.

42

Chapter 5

Dynamic Model with Multiple
State Diagrams and Activity
Charts

5.1 Introduction

In the last two chapters, we described our approach regarding code generation
from the dynamic model of small systems which can be represented by a single
state diagram. The dynamic model of a real system, however, consists of multiple
state diagrams, each of which shows the behavior of a particular class of objects.
In this chapter, we demonstrate the code generation from the object and dynamic
models having multiple state diagrams [17, 18]. We realized that the behavior of
active objects, which keep their own control, can well be represented by activity

diagrams [37].

43

5.2 The Elevator Example

We illustrate our approach using an application that simulates a system control-
ling three elevators and six floors. The problem is a simplified version of the lift
problem presented at the Fourth International Workshop on Software Specifica-

tion and Design [38]. The system has the following constraints.

1. Each elevator has a set of buttons, one for each floor. These illuminate
when pressed and cause the elevator to visit the corresponding floor. The
illumination is cancelled when the corresponding floor is visited by the ele-

vator.

2. Each floor has two buttons (the ground and the top floors have only one but-
ton each), one to request an up-elevator and one to request a down-elevator.
These buttons illuminate when pressed. The illumination is cancelled when
an elevator visits the floor and is either moving in the desired direction,
or has no outstanding requests. In the latter case, if both floors’ request

buttons are pressed, only one should be cancelled.

3. When an elevator has no requests to service, it should remain at its final

destination with its doors closed and await further requests.

4. All requests for elevators from floors must be serviced eventually, with all

floors given equal priority.

5. All requests for floors within elevators must be serviced eventually, with

floors being serviced sequentially in the direction of travel.

5.3 Designing the Elevator System

To design the elevator simulation system, we believe that there must be a Con-

troller class that keeps control of the overall system and at least two more classes:

44

Elevator and Floor. Figure 5.1 shows the object diagram. We used the OMT no-

tation except that the arrow headed lines between classes show possible messages

between them.

Controller

assignRequest(Floor,Direction)

upRequest(this)

6 downRequest(this) 3
Floor 6 Elevator
R upArrived(this) -
uplList. downArrivedthis) | VT
downList direction

callUpElevator()
callDownElevator()

button[1..10]

convenience(Floor,Dir)

getOn(Person) . g
addToUpList() » assignRequest(Floor,Dir)
addToDownList() findDirection()
upGetOn() moveNext()
downGetOn() |] e

Figure 5.1: Object model for the elevator simulation system

When a button is pressed on a floor, the Floor object sends a request to the
Controller for an elevator in the desired direction. The Controller sends a message
to each of the Elevator objects asking its convenience for servicing the request.
In response, each of the Elevator object gives an integer value representing its
convenience for the request. The elevator which returns the highest value is the
most convenient, and the Controller assigns the request to it. Each of the elevator
runs in parallel and checks whether it has any outstanding requests. If there is
a request, the elevator visits the desired floor and sends an arrival message to
the Floor object. The floor gets all the persons that were waiting on the elevator.
Each person, while getting on, presses the destination button inside the elevator.
The elevator then moves to the required floors in sequential order. When an

elevator stops at a floor, it resets the destination button for that floor and gets

all the persons off whose destination was that floor.

In a real elevator system, persons come in randomly at various floors and
press the buttons in the desired directions. However, to make the system a bit
interactive, we made the user (operator) of the system to press the floor buttons

by clicking at them with mouse, meaning that a person has come at the floor and

45

has pressed a button in the desired direction. The Floor object then increments
the number of persons waiting at the floor. The destination floor for a person
is randomly determined. If there is no person waiting at the floor when a floor
button is pressed, the Floor object also sends out a callElevator message to the

Controller.

5.4 The Controller Class

Controller is a special class that keeps the main flow of control of a system [14,
15, 20, 21] and represents the system as a whole. One of the main responsibilities
of the Controller is to initialize the system and create permanent objects of the
system. Objects are called permanent if they exist throughout the system is
running. Temporary objects are created for a short time while the system is
running. After the initialization of the system, control mostly resides in the
Graphical User Interface (GUI) component of the system. Controller receives
messages from the GUI when a user interacts with the system. In response to
the these messages (events), Controller possibly changes the state of the system
and sends messages to other objects in the system. Typically, there is only one

controller in a system, so there is only one object instance of this class.

The Controller class in the elevator example is a uni-state class and does not
need a state diagram. It initializes the system by creating permanent objects (6
instances of Floor and 3 instances of Elevator). After initialization, control of the
system resides in the click-able buttons that represent the up and down buttons
at each floor. While the system is running, the Controller always behaves in the
same way whenever it receives incoming messages from the Floor objects. So we
do not need to do anything special about implementing the dynamic behavior of

the Controller.

46

5.5 State Diagrams

Objects provide a number of services, which are accessed or get executed by
sending a message to them. Objects often have different states and the availability
of services provided by the objects depends upon the state they are currently in.
Such objects can be named as multi-state objects. The behavior of a multi-state
object is usually represented by a state diagram. Unlike the Controller class,
the Floor class in the elevator example, is a multi-state class. To represent the
behavior of a multi-state class, we use Harel’s statecharts [33, 34, 35], which
can contain OR-type or AND-type state hierarchy. Figure 5.2 shows the state

diagram for the Floor class.

1

upButton/callUpElevator

NoWait < UpWait
upArrived(Elevator) upButton/addToUplList
—& /upGetOn(Elevator)
downButton/ .
callDownElevator downArrived(Elevator)
/downGetOn(Elevator)
downArrived(Elevator)
/downGetOn(Elevator) downButton/
callDownElevator
Y A 4
DownWait upButton BothWait
/callUpElevator ,
downButton/ » downButton/addToDownList
addToDownList < upButton/addToUpList
- @@ upArrived(Elevator)
/upGetOn(Elevator)

Figure 5.2: State diagram for Floor class

5.5.1 Converting a State Diagram into Code

To implement a state diagram, an object-oriented approach, described in the
previous chapters, is used where each state becomes a class and each transition
becomes an operation in that class. OR-type substates of a superstate becomes

subclasses of the class that corresponds to the superstate. All the state classes

47

are subclassed from an abstract class that serves as a common interface for the
state classes. We named the common interface class for the state classes of Floor

as FloorState.

As can be seen in Figure 5.3, all the actions in the state diagram become
methods in the corresponding domain class. For example, the callUpElevator and
upGetOn actions become methods in Floor class. The Floor class maintains an
attribute state of FloorState type. The value of this attribute shows the current
state of the Floor object. Objects that communicate with the Floor object do
not need to know about state classes (subclasses of FloorState). They just send
requests to the Floor, which become events for it. The Floor object delegates all
the requests (events) to its state object. If there is a transition on the event, the
corresponding operation in one of the state classes will get executed and the state

of the Floor will change.

Floor
FloorState state FloorState
callUpElevator() upButton(Floor f)
callDownElevator() downButton(Floor f)
addToUpList() upArrived(Floor f,Elevator e)
addToDownList() downArrived(Floor f,Elevator e)
upGetOn(Elevator e)

downGetOn(Elevator ¢)

UpWait BothWait
upButton(Floor f) upButton(Floor f)
downButton(Floor f) downButton(Floor f)
upArrived(Floor f,Elevator e) upArrived(Floor f,Elevator e)

downArrived(Floor f,Elevator e)

NoWait DownWait
upButton(Floor f) upButton(Floor f)
downButton(Floor f) downButton(Floor f)

downArrived(Floor f,Elevator ¢)

Figure 5.3: Class structure of the Floor class and its companion classes

As there are many Floor objects, the methods of the subclasses of the FloorState
class, which correspond to state transitions, should know which instance of the
Floor class is going to change its state while the methods are executed. Due

to this reason, the Floor object passes itself to the state object as a parameter,

48

whenever it delegates outside requests (events) to the state object. Part of the
implementation code for the Floor class and its corresponding state classes is

shown below.

class Floor {
FloorState state = new NoWait(); //default state
//delegates all events to state and passes itself as parameter
upButton() {state.upButton(this);}

upArrived (Elevator e){state.upArrived(this, e);}

class FloorState {
//contains empty declarations of all the methods of its subclasses}
class NoWait extends FloorState {

upButton(Floor f) {f.callUpElevator();f.state = new UpWait();}

downButton(Floor f) {f.callDownElevator();f.state = new DownWait ();}}
class UpWait extends FloorState {
upButton(Floor f) {f.addToUpList();}

downButton(Floor f) {f.callDownElevator();f.state

new BothWait();}
upArrived(Floor f, Elevator e) {f.upGetOn(e);f.state = new NoWait();}}

5.5.2 Optimizing the Code

As can be seen in the code above, when an event occurs, a method in the abstract
class (FloorState) is called which is a fast operation. When there is a transition,
however, a method in one of the subclasses of the FloorState class for that oper-
ation is executed. The method dynamically creates a new instance representing

the new state. The dynamic creation of objects makes the code a bit less efficient.

49

Optimization of the code can be achieved by creating an instance of each of
the subclasses of the FloorState class beforehand and then assigning one of these
instances to the state object while a transition is executed. As the subclasses
of FloorState only contain operations and do not have any data, their instances
can be shared among different Floor objects. Therefore, we make these instances
as class members (static) in the Floor class. Also, since these instances are only
meant to be assigned to the state object and should not be changed, we declare
them as constants (final). Following is part of the optimized code for the Floor

class and its associated state classes.

class Floor {

// create instances of the subclasses of FloorState beforehand

final static FloorNoWait NO_WAIT = new FloorNoWait();

final static FloorUpWait UP_WAIT = new FloorUpWait();

final static FloorDownWait DOWN_WAIT = new FloorDownWait();
final static FloorBothWait BOTH_WAIT = new FloorBothWait();

FloorState state = NO_WAIT; //default state

class FloorNoWait extends FloorState {
// use the already created instances instead of creating new ones
upButton(Floor f) {f.callUpElevator();f.state = UP_WAIT;}
downButton(Floor f) {f.callDownElevator();f.state = DOWN_WAIT;}

5.6 Activity Diagrams

State diagrams work well for representing the behavior of passive objects, which
do not usually keep control. They get control only when some other object sends
a message to them causing the execution of one of their methods. After having

completed the execution, control is transferred back to the object that had sent

a0

the message.

In real systems we sometimes encounter active objects, which keep their own
control. They mostly perform their operations in a continuous loop. During the
execution of the methods, they can send messages to execute methods in other
objects and cause a temporary transfer of control to those objects. Control is
transferred back to the active objects as soon as the execution of the methods in
other objects is finished. For example, Elevator is an active class and does not
wait for incoming messages from other objects. Instead, it executes a continuous
loop and in each iteration it checks whether there is any outstanding request that

should be serviced.

We observed that state diagrams could not represent well the behavior of
active objects, because the transitions in state diagrams are mostly triggered
on the occurrence of some external events. We represent the behavior of active
objects by an activity diagram. An activity diagram is like a state diagram except
that the transitions are not triggered by external events [37]. Each node in the
activity diagram shows an activity or possibly a condition, whereas in the state
diagram it shows a state. As soon as the activity is performed, the transition
is triggered and a new activity starts execution. In an activity diagram, the
object itself determines when to execute a transition. It does not have to wait for
other objects to sent it messages, which become events to trigger the transitions.

Figure 5.4 shows the activity diagram for the Elevator.

In the proposed approach, an active class is implemented as a Java thread.
Therefore, each Elevator object has its own control. The continuous loop, which
can be seen in the activity diagram, is placed inside the run() method. Each
activity becomes a method in the class. If a node represents a condition, e.g.,
MoveNeeded?, it also becomes a method but returns a boolean value. In the loop,
each method is called in the sequence in which it appears in the activity diagram.
The method that represents a condition is called from inside an if-statement.
Sub-activities, e.g., NotifyArrival and OpenDoor inside the Stop activity, become

separate methods as well, and they are called from the method that corresponds to

51

[YES]
StopNeeded? Stop

[NOJ
@ ™ NotifyArrival
(MoveNeeded?)7

[NOJ

[YES] OpenDoor

GetOn
MoveNext
o CloseDoor
SleepASecond

Figure 5.4: Activity diagram for Elevator class

s

the super-activity (in this case the Stop activity). Following is the implementation

code generated from the activity diagram of the Elevator.

class Elevator implements Runnable {
public void run() {
for (;;) {
if (stopNeeded()) stop();
if (moveNeeded()) {findDirection() ;moveNext();}

sleepASecond();

}

void stop() {
notifyArrival();
openDoor () ;
get0ff();
getOn();

closeDoor();

52

5.7 Classes having both State and Activity Di-

agrams

Classes of objects may have more than one aspects which should be implemented
separately. An active object, whose behavior is represented by an activity di-
agram, can also be a multi-state object and, therefore, need a state diagram
showing its multi-state behavior. The Elevator class in the example is an ac-
tive but uni-state class. (Here we are using the term multi-state in its strict
meaning that suggests state-transitions triggered by external events which are
asynchronous, rather than internal signals which merely show the completion of
some actions.) Whenever the Controller object sends a message to the Elevator
object asking its convenience, the Elevator object returns its convenience as an
integer value. Similarly, each time the Controller object assigns an elevator to
some floor, the Elevator object records the request as an outstanding request.
This uni-state behavior of the Elevator class is not shown in the activity diagram
(Figure 5.4). If the Elevator had also been a multi-state class, we would have had
to draw a state diagram in addition to the activity diagram, and to implement it

in a way similar to the Floor class.

Suppose the elevator system has a Halt and a Restart buttons for each elevator
which are used by a maintenance operator to do his maintenance job. The elevator
now has two states: Normal (default) and Halted. In the Normal state the
elevator acts just like before. However, when the Halt button is pressed, a halt
action is executed which makes the elevator stop at the current floor and suspends
the thread. In the Halted state, the elevator returns INCONVENIENT whenever
its convenience is asked by the Controller. The Controller will not be able to assign
a request to an Elevator in the Halted state. When the Restart button is pressed,
the elevator goes back to the Normal state. This multi-state as well as active

behavior of the Elevator class can be implemented as follows.

33

class Elevator implements Runnable {
final static INCONVENIENT = -99999;
ElevatorState state = new ElevatorNormal(); //default elevator state
//delegating state-specific requests to state object
public int convenience(){state.convenience(this);}
public void haltBut() {state.haltBut(this);}
public void restartBut() {state.restartBut(this);}
// state diagram actions
public void halt(){stop();suspendThread();}
public void suspendThread() {//some code}
public void resume() {//some code}
// activity diagram code
public void run() {
// as before

class ElevatorState {

//contains empty declarations of all the methods of its subclasses}
class ElevatorNormal extends ElevatorState {

public int convenience(Elevator e){// as before}

public void haltBut(Elevator e){e.halt();e.state = new ElevatorHalted();}}
class ElevatorHalted extends ElevatorState {

public int convenience(Elevator e){return e.INCONVENIENT;}

public void restartBut(Elevator e){e.resume();e.state = new ElevatorNormal();}}

5.8 Automatic Code Generation

The proposed approach has been implemented in our system, O-Code, which
automatically generates executable Java code from the specifications of the object
and dynamic models of a system. O-Code takes as input specifications of the
object diagram, state diagrams and activity diagrams in Design Schema List

(DSL) language [10]. O-Code generates Java code for different classes in the

o4

following way:.

5.8.1 Generating Code for Domain Classes

Classes that appear in the object diagram are called domain classes. Declaration
code for the domain classes, which contains attributes and methods, is generated
from the information of the object diagram. Detail implementation code for each
class is generated depending on the class type and whether it has any associated

state diagram and/or activity diagram, as explained below.

Controller

In any application, there is typically one class that plays the role of a controller.
The Controller initializes the system and all permanent objects in the system. If
the permanent objects are active, new threads for them are also created. The
main() method is defined in the Controller which instantiates an instance of the
Controller. O-Code generates the following code for the Controller class of the

elevator application.

class Controller {
public Elevator[] elevatorList = new Elevator[3];
public Floor[] floorList = new Floor[6];
public Controller() { // constructor
for (int i=0;i<floorList.length;i++)
floorList[i] = new Floor(i,this); // initializing permanent objects
for (int i=0;i<elevatorList.length;i++){
elevatorList[i] = new Elevator(i,this);// initializing permanent objects

new Thread(elevatorList[i]).start();// creating threads for active objects

}
public static void main(String args[]){

Controller ¢ = new Controller(); // instantiating Controller

95

Classes having Activity Diagrams

If a domain class has an activity diagram, the class implements the Runnable
interface, so that separate threads can be started for its objects while instantiating
them. run() method is defined in the class, as explained earlier. For each activity
in the activity diagram, a method is declared in the class. Body code for these

methods is entered by the user.

Classes having State Diagrams

If a domain class has a state diagram, an attribute state is defined that represents
the current state of objects of the class. For each event in the state diagram, a
method is defined that delegates the event to the state object. For each action
in the state diagram, a method is declared. Body code for the action methods is

entered by the user.

5.8.2 Generating Code for State Classes

If a domain class has a state diagram, additional classes are created that imple-
ment the state-specific behavior of the class. We call these extra classes as state

classes. State classes are generated as follows.

1. To provide a common interface to all state classes, an abstract class is
defined. The name of the class is obtained by suffixing “State” to the
name of the corresponding domain class. It contains empty declarations
of operations for all events in the state diagram. FEach state class has

implementation code for its own events (operations).

26

2. A class is defined for each state. The name of the class is derived from the
name of the state. If the state is a substate of another state then it can

make an OR-type or AND-type state hierarchy.

OR-Type State Hierarchy: Classes corresponding to the substates be-
come subclasses of the class that corresponds to the superstate. Tran-
sitions from the superstate are implemented as methods in the super-
class and are derived in the subclasses. Transitions from the substates

are implemented as methods in the subclasses.

AND-Type State Hierarchy: The class corresponding to the superstate
of AND-states becomes a composite class that contains as many ob-
jects as the substates. For each substate, an attribute is defined. The
name and type of the attribute are derived from the name of the sub-
state. For each event on the substates, a method is defined that calls
the method(s) for that event defined in the class(es) for the substate(s).
The class that corresponds to an AND-state becomes an abstract class

and serves as an interface for its own subclasses.

3. An event on any state becomes a method in the corresponding class. Body
code for the method is also completely generated, which contains a call to

the action of the transition and code for adjusting the new state.

S7

Chapter 6

Automatic Code (enerating

System: O-Code

6.1 Introduction

In the previous chapters, we have mentioned several times our code generation
system, O-Code, which generates Java code from the specifications of the dynamic

model of a system. In this chapter, we describe the system in detail.

O-Code is developed in Java and is basically composed of three modules:
Transformer, Optimizer and Code Generator. The source code is approxi-
mately 450, 200 and 400 lines respectively. The source code of the main module,

which controls the above three modules, is approximately 350 lines.

Figure 6.1 shows the overall structure of the system. Modules are enclosed
in round-corner rectangles and methods are enclosed in simple rectangles. A
double line rectangle shows that the method is called several time from inside
a loop. The flow of control goes from left to right inside modules. First the
main module calls the Transformer module which reads the specifications of the
dynamic model and converts the information into an intermediate (table) form.

Then the main module calls the Optimizer module which reads the information in

28

the intermediate form and performs some optimization so that code can easily be
generated from them. Finally the main module calls the Code Generator module
which generates Java code for the application. The following sections give a brief

description of the functionality of these three modules.

Trasformer

interpretFile(dataFile)

readFile(fileName) ‘

interpretLine(DSLStatement) ‘

Optimizer

setDefaultStates(stateArray)

findEventsActions(stateArray) ‘

Code Generator

defineClass(state)

defineConcurrentClass(state) ‘

defineController() ‘

defineControllerState() ‘

defineConcurrentSubClass(state) ‘

defineCommonClass(state) ‘

Figure 6.1: Overall structure of O-Code system

6.2 Transformer

The Transformer module reads the specifications of the state diagram, given in
DSL format, and makes a table of states to properly record all the information,

thus transforming the information from DSL format to a table format.

A number of classes have been used to form the structure of a nested table and
to represent the elements of a state diagram. These classes include: State, Transi-
tion, Action, Event, Argument, Condition and InternalEvent. Figure 6.2 shows links

between these classes. The figure shows that a State object can have a number

29

of Transition objects and/or InternalEvent objects associated with it. A Transition
object can have an optional Action object, Event object and/or Condition object
associated with it. An InternalEvent object always contains one Action object
and one Event object. An Event object may have a number of Argument objects
associated with it. The figure also shows that all objects except the State ob-
jects are maintained directly or indirectly by the State objects. The State objects
themselves are maintained in a global array (stateArray) which is accessible to all

modules.

superstate

nextState

Transition InternalEvent

substate

State

4@ Action

—(Event

.

Condition Argument

Figure 6.2: Classes that represents the elements of a state diagram

The Transformer module has a number of methods. The most important are
readFile, interpretFile and interpretLine methods. Following is a brief description

of the functionality of these methods.

6.2.1 The readFile Method

This method takes the name of the input file, which is in DSL format, as an input

argument. It reads the file character by character, throws all white spaces and

60

creates a long string that contains all the DSL statements. It gives the long string

(called dataFile) as the result. The dataFile is a global variable of type String.

6.2.2 The interpretFile Method

This method first splits the long dataFile string into several small strings each
representing a DSL statement. A DSL statement always ends on a semicolon, so
the dataFile string is split on semicolons. Each string, which represents a DSL
statement, becomes an element of an array. The interpretFile method then starts
a loop which calls the interpretLine method (explained below) for each string and

passes the string as argument.

6.2.3 The interpretLine Method

This is quite a long method which takes a string representing a DSL statement
as argument and interprets it. It collects the information contained in the DSL
statement and, based on this information, instantiates objects of some of the
classes shown in Figure 6.2. Sometimes it only initializes pointers in objects that

are already created. For example, after reading the following DSL statement

0STDN(n3) [1oc(10:10) ,size(100:80) ,ostdnAttr (name:Operating,

concurrent{n4,n8,n13})];

a State object having the value of its Id attribute as “n3” will be searched. If
the object does not exist, it will be created. The name and concurrent attributes of
this object will be initialized with the values “Operating” and “true” respectively.
The substates attribute which is an array of pointers to other State objects and
represents the substates of the current state will contain pointers to the State

objects having Ids “n4”, “n8” and “n13”.

61

6.3 Optimizer

After the Transformer module does its job, the information contained in the
DSL file is converted into an intermediate form in which state diagram elements
are represented as object instances. This information, however, is unorganized
and needs to be optimized. For example, in a state diagram, the default state
is indicated by an arc to the state from a small solid circle. This small circle
merely shows that the adjacent node is a default one. But DSL, being graphical
oriented, treats it as a node like any other node. Therefore, the Transformer
module supposes it a state (having the name START). We need to ignore all such
states and to consider the adjacent ones as the default states. Also, for code
generation, we need to know not only the events that are supposed to occur on a
state itself but also the events that may occur on its substates. The purpose of the
Optimizer module is to refine the information given by the Transformer module
in a way so that code can easily be generated from it. It also sorts out the table
of states into a sequence so that super-states should always come before their
substates. The setDefaultStates and findEventsActions are the important methods

of the Optimizer module. Following is a brief description of these methods.

6.3.1 The setDefaultStates Method

This method follows the transitions from the states having their names as “START”
and finds out the default states. It also eliminates all the State objects that have
the name “START” from stateArray.

6.3.2 The findEventsActions Method

This methods finds out for each State object the events that occur on the substates
of that state. It uses the pointers contained in the substates array and then follows
the transitions and internalEvents of each of the substates to fetch the events and

actions.

62

6.4 Code Generator

This module uses information given by the Optimizer module and generates Java
language code. All the generated code is first written to a string buffer and in

the end the buffer is written to disk.

The Code Generator module first executes the defineController and defineCon-
trollerState methods which generates code for the Controller and ControllerState
classes respectively. A loop is then started which calls the defineClass method
for each State object present in the stateArray and passes the state as the input
argument. The defineClass method first finds the superstate of the state so that
the class can be subclassed from the class for the superstate and then it calls one

of the following four methods depending on the type of the state:

Concurrent State If the state has substates of AND-type, the defineConcur-

rentClass method is called.

Concurrent Sub-State If the state is an AND-type substate of another state,

the defineConcurrentSubClass method is called.

Common State In all other cases, the defineCommonClass method is called.

The above three methods also call the defineTransition and definelnternalEvent

methods when there is a transition and internal event on the state.

63

Chapter 7

Discussion

7.1 Discussion

We put all behavior associated with a particular state into one object. Because
all state-specific code is contained in a single ControllerState subclass, new states
and transitions can be added easily by defining new subclasses and operations.
An alternative would be to use data values to define internal states and have
Controller operations check the data explicitly. In such case, state transitions
are implemented as assignments to some variables and have no explicit repre-
sentation. As an example, Figure 7.1 shows code for the speedBut() method for
the state diagram of the Air Conditioner (Figure 4.3). Note that transitions are
implemented by assigning values to variables that represent various states. This
may be good for efficiency but the actual behavior of the system that was rep-
resented as various states and transitions at the design stage, is buried into the
code. It is very difficult to understand the behavior of the system by looking only
at the code. Representing different states as separate objects makes the transi-
tions more explicit and the code more understandable. This keeps the flavor of
the state diagram in the implementation code and is also very helpful for reverse

engineering the code back into the dynamic model.

Our approach may look like introducing too many classes, because the be-

64

class Controller {
int mainState = 1; // 1=Off, 2=Operating
int modeState = 1; // 1=Cooler, 2=Heater
int speedState = 1; // 1=Low, 2=Medium, 3=High
int directionState = 1; // 1=ShowDirection

public void speedBut(){
switch (mainState){
case 1:{
break;}
case 2:
switch (speedState) {
case 1:{
speedState = 2;
setMedium();
break; }
case 2:{
speedState = 3;
setHigh();
break;}
case 3:{
speedState = 1;
setL.ow();
break;}
}
}
}

Figure 7.1: Implementing a state diagram using data values to represent states

havior for different states is distributed across several ControllerState subclasses.
This increases the number of classes and the implementation of behavior is less
compact than a single class. However, such distribution eliminates large con-
ditional statements. Large conditional statements are undesirable because they
tend to make the code less understandable and difficult to modify and extend.
Encapsulating each state transitions and actions in a class elevates the idea of an
execution state to full object status. Furthermore, for the sake of automatic code
generation, it is very natural to have a one-to-one correspondence between the
components of state diagrams (such as states and transitions) and the program
elements (such as classes and methods). That is why, well-known code generating

tools, like Rhapsody (i-Logix) [31, 32|, also represent states as classes.

In our approach, a subclass of ControllerState is instantiated whenever a tran-
sition is executed. It seems that the resulting code is less efficient. A solution

to this problem is to create objects of all subclasses of ControllerState ahead of

65

time and then, while executing a transition, assign an appropriate instance to the
state object instead of instantiating a new one. This has been shown in Chapter 5

under [Optimizing the Code].

7.2 Comparison with Rhapsody

Rhapsody (i-Logix) [32], which is a successor of O-Mate [31], is a tool that allows
to create object diagram, state transition diagrams and message sequence charts
for an application and then automatically generates C++ code for the application.

Because Rhapsody is the only tool of its kind, we compare the code generated by
O-Code to that of Rhapsody.

The similarity between O-Code and Rhapsody is that both of the systems
treat the states of a state diagram as objects. The differences lie in the treat-
ment of state hierarchy, events and transitions. The details of converting a state
diagram into code are not fully given in the papers [31, 32|, where Rhapsody is
reported. But looking at the code generated by it, one can understand the struc-
ture of the code. As shown in Table 7.1, in Rhapsody events are implemented
as classes; state hierarchy is implemented by having pointers to super/sub-state
classes; and transition searching is performed by executing a switch statement.
Whereas in O-Code, events become methods; state hierarchy is implemented by
inheritance; and transition searching is automatically performed by using the
concept of polymorphism. As shown below, these differences give an edge to O-
Code over Rhapsody in terms of compactness, efficiency and readability of the

generated code.

7.2.1 Executing Image of the Code Generated by Rhap-
sody

In Rhapsody, all states and events become classes. There is an abstract class

State from which four classes: AndState, ComponentState, OrState and LeafState

66

State diagram Rhapsody’s 0O-Code’s

components implementation implementation
States Become classes Become classes
Events Become classes Become methods
State hierarchy Using pointers Using inheritance

Transition searching | Using switch statement | Using Polymorphism

Table 7.1: Comparing the mechanisms used by Rhapsody and O-Code to imple-

ment a state diagram

are derived. The four classes implement respectively the general behavior of four
types of states: superstate of AND-substates, AND-substate, superstate of OR-
substates and leaf state. Each state of the state diagram become a class and is
subclassed from one of the above four classes depending on the state type. One
object instance is created for each state, and the Controller class keeps references
to all these objects. The Controller object can always find which state is active,
because all the state classes have a method boolean in() that returns “true” if the

state is active.

Similarly, there is a general OMEvent class from which all the event classes
are derived. For each transition, there is a method defined in the Controller class.
As shown in Figure 7.2, When a client of the Controller sends a request to it,
this becomes an event and a corresponding event object is created (Steps 1 and
2). The Controller object calls the takeEvent(Eventld) method of the active state
object and passes the event object as an argument (Steps 3 and 4). This method
contains a switch statement that finds if there is any transition on this event from
the current state (Step 5). If there is a transition, the corresponding method in
the Controller class is made executed (Steps 6 and 7), which updates the current
state of the Controller. If there is no transition, the event is sent to the object
representing the parent state (Step 8). All this when sum up takes a considerable
amount of time, in spite of the fact that all state objects are created ahead of

time and not during transitions.

67

(1) Event e occurs

(7) execute the : Multi-state object (2) Create an event object (eObj)
t iti d
ransttion code —» (Controller) (3) Find state objects that are currenly actiy

(4) Call takeEvent(eObj.Id) method
of the active state objects

A 4
Currently active ©) > SW(i:tﬁh sktq;er;:ent k
state object eck if there
keE X hod™ is a transition?
takeEvent(e) method gy [N transition]

Call takeEvent(e) method of
the parent state object unless
there is no parent

(6) [Transition]
Call the method that contains
the transition code

(a) Executing image of the code generated by Rhapsody

(1) Event e occurs

Multi-state object state object :| (3) Execute the
(Controller) (2) call method e() of e() method transition code
the state object

(b) Executing image of the code generated by O-Code

Figure 7.2: A conceptual view of the execution sequence in code generated by

Rhapsody and O-Code

68

7.2.2 Executing Image of the Code Generated by O-Code

In O-Code, states become classes but events become methods. Since state hi-
erarchy is implemented by inheritance, substates do not need to have pointers
to their superstates. For each transition there is a method defined in the class

corresponding to the state from which the transition is originated.

In our code, when an event occurs on which there is a transition, the method
defined for that transition in the current state class is executed. When an event
having no transition occurs, there will be no method for it in the current state
class and therefore an abstract method of the ControllerState will be called, which
is a fast operation. Nothing more happens. That is why, the time taken by our
code for such events is markedly short. If the event has a transition, the method
in the concrete state class gets executed which causes creating a new state object
and thus takes some time. However, as there are no conditional structures in the

code, the time is still shorter than that of Rhapsody’s code.

7.2.3 Comparing the Code Generated by Rhapsody and
O-Code

We used the same air conditioner example (Chapter 4) and compared the code
generated by Rhapsody to that of O-Code. To have a fair comparison, we rewrote
the code generated by Rhapsody in Java, because O-Code generates Java code

whereas Rhapsody generates C++ code. Findings of the comparison are as follow;

1. Code generated by O-Code is more compact. The original C++ code that
is generated by Rhapsody was too much long. After rewriting it in Java,
the source code becomes shorter but is still approximately five times longer
than the code generated by O-Code, as shown in Table 7.2. In addition,
as all states and events become subclasses of the various classes explained

above, the number of classes is much more than that of our code.

69

Rhapsody | O-Code

Source code: No. of lines 982 219
Source code: No. of bytes 19458 4413
No. of classes 23 13

Table 7.2: Comparing the compactness of the code generated by Rhapsody and
0O-Code

2. Qur code is more efficient than Rhapsody’s code. To compare the efficiency
of the code generated by O-Code and Rhapsody, we performed an experi-
ment in which the same sequence of 1000 requests was sent to the Controller
class. Out of these 1000 events, 556 caused transitions while the remaining
444 events did not cause any transition and were ignored. For each event,
the time taken to process the event was calculated. We made all the action
methods empty and concentrated on measuring the time taken while exe-
cuting transitions, i.e., changing states. To have more accurate results, we
repeated the experiment 20 times and calculated the average values. The
experiment was performed on Sun SPARC Station 10. According to the
results of the experiment in Table 7.3, to process an event that has no tran-
sition, our code is 57.50% more efficient than Rhapsody’s code. For events
having transitions, our code offers a 20.80% improvement over Rhapsody’s
code. The overall improvement that O-Code offers for all types of events is
38.00%.

3. Rhapsody code is less understandable.

As explained above, though Rhapsody implements state-specific behavior
in separate classes, it puts the transition-selection code in the case structure
inside the takeEvent(Eventld) method of the state classes. Actual transitions
are implemented as methods in the Controller class, which are called when
the current state object succeeds in finding a transition on an event. This

makes the code difficult to understand.

70

Rhapsody (z) || O-Code (y) | Improvement
(millisecs.) (millisecs.) || (z —y)/z * 100

Total time for events 127.8000 54.3000

without transitions (a)

Average time per event 0.2299 0.0977 57.50%
without transition

(a/444)

Total time for events 144.7500 114.6500

having transitions (b)

Average time per event 0.3260 0.2582 20.80%
having transition (b/556)

Total time for all events 272.5500 168.9500

(a+0b)

Average time per event 0.2726 0.1690 38.00%
((a + b)/1000)

Table 7.3: Comparing the efficiency of the code generated by Rhapsody and
0O-Code

Our code converts each event into an operation call. The appropriate
method is selected on the principle of polymorphism. The transition code is
put in separate methods in the corresponding state classes. All the states
and transitions are thus explicit without using any case structures. This

contributes to making the code more understandable.

71

Chapter 8

Related Work

8.1 Code Generating CASE Tools

The most related work is that of Harel and Gery [31, 32] whose tool, Rhap-
sody [39], generates C++ code from the object and dynamic models. As described

earlier, our code is more compact, efficient and simple than that of Rhapsody.

In addition to Rhapsody, there are other commercially available CASE tools
that support graphical editors to draw various OMT diagrams and then generate
some of the implementation code from them. The major one is Rational Rose [6]
which provides interactive graphical editors to make various UML [37] and OMT
diagrams. Because Rational Rose is basically a modeling and documentation tool,
it generates only header files from the object model and does not generate any
code from the state diagrams. Object Oriented Designer [9], Object Domain [7]
and MacA&D [8] are other tools that also generate only header files from the

object model.

Some of the tools, such as StateMaker [40], ROOM [41], Graphical Designer [42]
and StP [43], can generate code from the state diagrams, but they do not usually

support state hierarchy and concurrent states in the state diagrams.

SoftReuse [44, 45] extracts program specifications from domain models and

72

automatically generates programs. The domain models are described in the pro-
gram specification description language (PSDL) [46] which is based on ER model.
Before extracting program specifications, constraints about attribute values and
input-output data are defined. Looking from OMT, SoftReuse only considers the
object and functional models and does not consider the dynamic model. There-

fore, it cannot be applied to applications having dynamic behavior or control.

8.2 Implementing State Diagrams

In the traditional approach [29], a finite state machine is implemented by rep-
resenting it as a table and writing an interpreter to execute the table. This is
a straightforward but less efficient approach. In addition, implementing state

hierarchy and concurrent states is quite difficult.

Rumbaugh [20] has described an approach in which he has used inheritance
to implement state hierarchy but he does not consider concurrency and active

objects.

Our mechanism of converting a state diagram into implementation code has
some similarity with the State pattern [47], but State pattern neither addresses

the issue of state hierarchy nor does it address concurrency within state diagrams.

The relation between states and classes is examined by Ran [48]. Sane and
Campbell [49] say that states can be represented as classes and transitions as op-
erations. They implement embedded states by making a table for the superstate
and do not consider concurrent states. An object-oriented extension to the state

diagram has been done by Coleman et al. [50].

73

8.3 Other

Harada et al. [51, 52] have developed tools which convert the analysis and design
models of Structured Object Modeling Method (SOMM) into Design Schema List
(DSL) language [10]. The tools also includes a reverse engineering system OORE,

which generates design elements from a given C++ program.

Nakashima et al. [53, 12, 13] have developed tools which provide graphical
editors to draw various OMT diagrams interactively; compute layouts for the
diagrams using drawing layout algorithms; and generate DSL representation of

the diagrams.

Joung et al. [19] show how icons can be added to the state diagrams and then

code can be generated that animates the system.

74

Chapter 9

Conclusions

An object oriented approach has been proposed to convert the dynamic model
of a system, represented as a set of state transition diagrams and activity dia-
grams, into implementation code. State transition diagrams are used to show the
behavior of multi-state objects and activity diagrams are used to represent the

behavior of active objects which keep their own threads of control.

Using our approach, states in the state diagrams are represented as classes
and transitions as operations eliminating the need of using large conditional state-
ments. This makes the components of the state diagram explicit and the resulting
code easier to understand. Inheritance mechanism is used to implement OR-type
state hierarchy and the mechanism of object composition is used to represent
AND-type state hierarchy. Activity diagrams are implemented as Java threads.
The method deals with intra-object concurrency (within a single object) and

multiple thread concurrency (among several objects).

The proposed method has been implemented in our system, O-Code, which
automatically converts the dynamic model specifications into executable Java
code. The comparison with Rhapsody shows that the code generated by our
system is approximately 40% more efficient and five times more compact than

that of Rhapsody.

75

Acknowledgments

I wish to express my sincere thanks and profound gratitude to my supervisor
Dr. Jiro Tanaka, Associate Professor, University of Tsukuba, for his invaluable
guidance, advice, supervision and constant encouragement during the course of
the present study. The study would not have been possible without his generous

training.

I am highly obliged to Dr. Kozo Itano, Dr. Nobuo Ohbo, Dr. Seiichi Nishi-
hara, and Dr. Kazuhiko Kato of University of Tsukuba for serving as member
of the examination committee and critical readings of the thesis and for their

specific suggestions to improve the manuscript.

I thank members of HITO project: Dr. Minoru Harada, Associate Professor
Aoyama Gakuin University; Dr. Kiyoshi Itoh, Professor Sophia University; and
Dr. Atsushi Ohnishi, Professor Ritsumeikan University, for their advice and

comments.

I am grateful to all the reviewers who critically read my papers and their

comments improved the quality of this work.

Special thanks to Mr. Sucktae Joung, Mr. Satoshi Nakashima, Mr. Tohru
Ogawa, and all other members of IP-Lab, University of Tsukuba, for useful dis-

cussions, constructive criticism and timely help.

I wish to express my thanks to all my friends in Pakistan and Japan for their

encouragement, during this work.

76

Deep appreciations to my parents, brothers and sisters for their benevolent
prayers. Last but not least to my family Nighat, Suhani and Uzair for their

heartfelt support, love and prayers during their stay in Pakistan and Japan.

7

Bibliography

[1] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice Hall,
Eaglewood Cliffs, New Jersey, 1991.

[2] Grady Booch. Object Oriented Design with Applications. Ben-

jamin/Cummings, Redwood, California, 1991.

[3] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice Hall,
Eaglewood Cliffs, New Jersey, 1991.

[4] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley, Reading, Massachusetts, 1992.

[5] Philippe Desfray. Object Engineering: The Fourth Dimension. Addison
Wesley, Reading, Massachusetts, 1994.

[6] Rational Software Corporation. Rational Rose. http://www.rational.com.

[7] Object Domain Systems. Object Domain.

http://www.object-domain.com/.
[8] Excel Software. MacA€&D. http://www.excelsoftware.com/index.html.

[9] Taegyun Kim. Object oriented designer.
http://www.qucis.queensu.ca/Software-Engineering /blurb/OOD.html,
ftp.x.org.

[10] Minoru Harada, Terutada Fujisawa, Masataka Teradaira, Kouji Yamamoto,

and Susumu Hamada. Refinement of dynamic modeling of some, automatic

78

[11]

[12]

[13]

[14]

[15]

[16]

[17]

layouting of object oriented design schema, and reverse generation of design
schema from c++ program. In Object-Oriented Symposium ’96, pages 111
118, Tokyo, Japan, 1996. IPSJ. (in Japanese).

M Ohno and M Harada. Computer automated modeling engine for objects —
automatic extraction and classification of design elements from texts. Trans-
actions of Information Processing Society, Japan (94-SE-99), pages 105-112,
1994. (in Japanese).

Satoshi Nakashima, Jauhar Ali, and Jiro Tanaka. Applying graph drawing
algorithm to omt diagram. In Proceedings of International Symposium on
Future Software Technology (ISFST-96), pages 18-25, Xi’an, China, October
1996.

Satoshi Nakashima, Jauhar Ali, and Jiro Tanaka. An automatic layout sys-
tem for omt-based object diagram. In Proceedings of the Second World Con-
ference on Integrated Design and Process Technology, volume 2, pages 8289,
Austin, Texas, December 1996. SDPS.

Jauhar Ali and Jiro Tanaka. Automatic code generation from the omt-
based dynamic model. In Proceedings of the Second World Conference on
Integrated Design and Process Technology, volume 1, pages 407-414, Austin,
Texas, December 1996. SDPS.

Jauhar Ali and Jiro Tanaka. Generating executable code from the dynamic
model of omt with concurrency. In Proceedings of the IASTED International
Conference on Software Engineering (SE’97), pages 291-297, San Francisco,
California, USA, November 1997. IASTED.

Jauhar Ali and Jiro Tanaka. An object oriented approach to generate ex-
ecutable code from the omt-based dynamic model. Journal of Integrated

Design and Process Science. (to appear).

Jauhar Ali and Jiro Tanaka. Implementation of the dynamic behavior of

object oriented system. In Proceedings of the Third World Conference on In-

79

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

tegrated Design and Process Technology, Berlin, Germany, July 1998. SDPS.
(to appear).

Jauhar Ali and Jiro Tanaka. Implementing the dynamic behavior repre-
sented as multiple state diagrams and activity diagrams. In Proceedings of
AoM/IAoM 16th Annual International Conference, Chicago, USA, August
1998. SDPS. (to appear).

Sucktae Joung, Jauhar Ali, and Jiro Tanaka. Automatic animation from the
requirements specifications based on object modeling technique. In Proceed-
ings of International Symposium on Future Software Technology (ISFST-97),
pages 133-139, Xiamen, China, October 1997. Software Engineers Associa-

tion, Japan.

James Rumbaugh. Controlling code: How to implement dynamic models.

Journal of Object-Oriented Programming, 6(2):25-30, May 1993.

James Rumbaugh. Objects in the twilight zone: How to find and use appli-
cation objects. Journal of Object-Oriented Programming, 6(3):18-23, June
1993.

James Rumbaugh. The life of an object model: How the object model
changes during development. Journal of Object-Oriented Programming,
pages 24-32, April 1994.

James Rumbaugh. Going with the flow: Flow graphs in their various man-
ifestations. Journal of Object-Oriented Programming, pages 12-23, June

1994.

James Rumbaugh. Getting started: Using use cases to capture requirements.

Journal of Object-Oriented Programming, pages 8-12, September 1994.

James Rumbaugh. Omt: The object model. Journal of Object-Oriented
Programming, 7(8):21-27, January 1995.

James Rumbaugh. Omt: The dynamic model. Journal of Object-Oriented
Programming, 7(9):6-12, February 1995.

80

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

James Rumbaugh. Omt: The development process. Journal of Object-
Oriented Programming, pages 8-16, May 1995.

Grady Booch. Object Solutions: Managing the object-oriented project. Ad-
dison Wesley, 2725 Sand Hill Road Menlo Park, CA 94025, 1996.

Alfred V. Aho and Jeffrey D. Ullman. Principles of Computer Design. Ad-
dison Wesley, Reading, Massachusetts, 1979.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison Wesley, Reading, Massachusetts, 1996.

David Harel and Eran Gery. Executable object modeling with statecharts.
In Proceedings of 18th International Conference on Software Engineering,

pages 246-257. IEEE, March 1996.

David Harel and Eran Gery. Executable object modeling with statecharts.
Computer, 30(7):31-42, 1997.

David Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, (8):231-274, August 1987.

David Harel. On visual formalisms. Communications of the ACM, 31(5):514—
530, May 1988.

David Harel and Amnon Naamad. The statemate semantics of statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):293-333,
October 1996.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Ea-
glewood Cliffs, New Jersey, 1988.

Rational Software Corporation. Unified Modeling Language (UML).

http://www.rational.com.

IEEE Computer Society. Problem Set for the Fourth International Workshop
on Software Specification and Design, April 1987.

i-Logix Inc. Rhapsody. http://www.ilogix.com.

81

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

MicroGold Software, NJ, 08807. StateMaker.
Internet 71543.1172Q@Qcompuserve.com,
http://www.worldwidemart.com/mattw/software/Windows3.X /demo/.

ObjectTime Limited. ROOM. http://www.objectime.on.ca/.

Advanced Software Technologies. Graphical Designer.

http://www.advancedsw.com/.
Aonix. StP: Software Trough Pictures. http://www.ide.com/index.html.

Masaaki Hashimoto, Toyohiko Hirota, and Kazuhisa Yokota. An experiment
on reusing software based on domain model. Transactions of Information

Processing Society, Japan, 36(5):1040-1049, 1995. (in Japanese).

K Yokota, Masaaki Hashimoto, and M Sato. An experiment on reusing pro-
gram specifications described with conceptual data model and dependency
constraint-based language. In Proceedings of International Conference on

Computing and Information, pages 324-328, 1992.

Masaaki Hashimoto and K Okamoto. A set and mapping-based dectection
and solution method for structure clash between program input and output

data. In Proceedings of Computer Software and Application Conference,
pages 629-638. IEEE, 1990.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, Massachusetts, 1995.

Alexander S. Ran. Modeling states as classes. In Proceedings of the Tech-
nology of Object-Oriented Languages and Systems Conference, 1994.

Aamod Sane and Roy Campbell. Object-oriented state machines: Subclass-
ing, composition, delegation, and genericity. In ACM SIGPLAN Notices,
OOPSLA’95, volume 30, pages 17-32, Austin, Texas, October 1995. ACM.

82

[50]

[51]

[52]

[53]

Derek Coleman, Fiona Hayes, and Stephen Bear. Introducing objectcharts
or how to use statecharts in object-oriented design. IEEE Transactions on

Software Engineering, 18(1):9-18, January 1992.

Minora Harada, Takafumi Sawada, and Terutada Fujisawa. A structured

object modeling method somm and its environment some. Systems and

Computers in Japan, 27(11):1-18, 1996.

Minoru Harada, Kazuhiro Kitamoto, and Takashi Iwata. The structure ob-
ject modeling environment some which visualizes both the control structure
and the event-sending. In Object Oriented Symposium 97, pages 136-144,
Tokyo. Japan, 1997. IPSJ. (in Japanese).

Satoshi Nakashima and Jiro Tanaka. An automatic layout system for omt-
based object diagram. In Object-Oriented Symposium ‘96, pages 103-110,
Tokyo. Japan, 1996. IPSJ. (in Japanese).

83

