
 VNC-BASED ACCESS TO REMOTE COMPUTERS FROM

 CELLULAR PHONES

Buntarou Shizuki, Masato Nakasu, and Jiro Tanaka
Institute of Information Sciences and Electronics, University of Tsukuba,

Tennoudai 1-1-1, Tsukuba, Ibaraki, JAPAN (zip:305-8573)
�shizuki,baru,jiro�@iplab.is.tsukuba.ac.jp

ABSTRACT

We propose a virtual network computing (VNC)
based architecture for accessing the desktops of remote
computers from a cellular phone. A viewer is provided
on the cellular phone that enables the user to see and ma-
nipulate the desktop of various remote systems such as
MS Windows, Macintosh, and UNIX. The system to be
accessed must be running a VNC server and it must be
attached to a network. A proxy is used to send the image
of the desktop to the cellular phone, to convert different
devices, to suppress network traffic, and to support recov-
ery from an unscheduled disconnection. To reduce user
effort and solve problems inherent to the cellular phone’s
small screen, several functions are provided on the cellu-
lar viewer. Frequently used screen areas can be assigned
and restored quickly by using the Shortcut function. The
Guidance function can be used to show the current key
assignments. Two areas can be viewed at the same time
by the Twin view function. A prototype of the proposed
architecture has been implemented using Java and has
been tested on a Java-enabled cellular phone emulator.

KEY WORDS
Virtual Network Computing, cell phone, small screen
problem, iAppli, Java.

1 Introduction

Cellular phones have shown a dramatic improvement in
their functionality to a point where it is now possible to
have cellular phones execute Java programs. As a result,
cellular users throughout Japan are now able to read and
write e-mail, browse Web pages, and play Java games
using their cellular phones. This trend has prompted us
to propose the use of a cellular phone as a device for
remotely controlling computers. For example, if a cel-
lular user is able to remotely access computers (such as
workstations in offices and personal computers (PCs) in
homes) or other networked digital appliances, it would
provide the user with the following capabilities:

� to see the contents of a file placed on the desktop of
a remote computer.

� to reboot a remote server as an administrator.

While it is not very difficult to develop a specific
system to satisfy each of the above operations separately,

Figure 1. A cellular phone SVNC viewer accessing the
desktop of a remote MS Windows system

it lacks the generality needed for performing several such
functions with one device.

This paper presents a virtual network computing
(VNC)[1] based architecture for accessing the desktop of
various remote systems (such as MS Windows, Macin-
tosh, and UNIX systems) from a cellular phone. It is as-
sumed that the remote computer system is running a VNC
server and that it is attached to a network. The cellular
user can see and manipulate the desktop on the cellular
phone. Figure 1 and Figure 2 shows the viewer that we
have implemented on a Java-enabled cellular phone.

Figure 1 shows our viewer running on a cellular
phone accessing the desktop of a remote MS Windows
system. Figure 2 shows our viewer running on an em-
ulator1 accessing the desktop of a remote Linux system.
This paper also describes several user interfaces, based on
our architecture, which overcome some of the problems
associated with the small screen[2] of cellular phones.

2 An Architecture for Cellular Phones

The use of existing remote display protocols such as the
X Window System Protocol[3] and the Remote Desk-
top Protocol[4] of Microsoft’s Windows 2000 Terminal
Services[5] does not provide the required capability to
realize the following goals:

Convert different devices. A cellular phone is physi-
cally limited. The typical size of the screen is 2.2
inches with 120x130 pixels. The phone usually has

1Hereafter, we use captured screen images of i-JADE released by
Zentek Technology Japan, Inc. (http://www.zentek.com/) that
emulates an i-mode cellular phone with a built-in KVM.

Figure 2. SVNC viewer on a emulator accessing the desk-
top of a remote Linux

about sixteen keys. In contrast, current desktops are
manipulated with keyboards that have over 100 keys
and pointing devices such as a mouse.

Suppress network traffic. The wireless transmission
bandwidth available for a cellular phone is limited.
Currently, it is 384k bps, even on IMT-2000 based
services (only downstream at this transmission rate).

Recover from an unscheduled disconnection.
Because of its wireless nature, stable network
connectivity cannot be expected. For example,
when the user goes into a tunnel or a building,
established connections can be lost. In addition,
in order to use the same cellular phone to talk
to someone, the user must terminate the network
connection.

Suppress computational resource use. CPU perfor-
mance and memory size are limited on a cellular
phone to achieve portability and to lower power
consumption.

2.1 The VNC-based architecture

To achieve the above-mentioned goals while at the same
time considering portability and generality, we propose
a VNC[1] based architecture. VNC is an implementa-
tion of a remote display system based on a Remote Frame
Buffer (RFB) protocol[6].

Structure

Figure 3 depicts the VNC architecture. It consists of
VNC servers running on one or more remote computers,

RFB CRFB

VNC server(s) SVNC viewer

SVNC
proxy

Figure 3. VNC-based architecture

a Smart VNC (SVNC) proxy, and a SVNC viewer on a
cellular phone. A VNC server sends a remote desktop
display as bitmap images in RFB protocol.

A SVNC proxy converts (crops, shrinks and resam-
ples) the display image and then transfers the converted
image to a SVNC viewer in response to a user request
that was received from that SVNC viewer. The transfer
is performed in our own Compact RFB (CRFB), our sim-
plified RFB protocol. Then, the SVNC viewer displays
the transferred images. Key events received by the SVNC
viewer are transmitted to a SVNC proxy that coverts them
and sends them to the server.

When the user first tries to connect to a remote com-
puter, he must specify his user name and password for au-
thentication as well as the host name of the computer that
is running a VNC server. If authentication succeeds, the
SVNC proxy establishes a session with the VNC server
and the SVNC viewer starts user services.

To suppress network traffic, encoding is changed
depending on contexts. Usually, colored display im-
ages are transferred from the SVNC proxy to the SVNC
viewer. However, while the user is manipulating the re-
mote desktop, such as scrolling and moving the pointing
device, the display images are gray-scaled to reduce the
number of bytes required to encode the image.

Maintaining the states of a session

In order to recover quickly from an unscheduled discon-
nection, the SVNC proxy maintains its own database con-
taining each session’s unique information such as the user
name, the password, the target host name, and other in-
ternal states.

When it is first connected to a SVNC viewer, the
SVNC proxy searches its own database using the user
name and the target host name pair as a key. It determines
whether or not there has been any previously established
session. If such a session did exist, the proxy restores the
stored states. A session’s state in the proxy is discarded
when the user explicitly terminates it on the viewer.

2.2 Benefits from the architecture

The VNC-based architecture described in the previous
section has the following benefits.

The VNC protocol is an image-based protocol in
which updates to a screen by applications are captured

(a) (b) (c)

Figure 4. Snapshots of a SVNC viewer

and transferred in bitmap images to the viewer. There-
fore, we can manipulate the applications running on the
remote system by browsing the same image that we
would be browsing if we were sitting at the remote com-
puter.

We can utilize the general availability of VNC
servers. VNC is becoming widely available as an infras-
tructure for controlling remote computers and for linking
home appliances with PCs (such as �VNC[7] and [8])
due to the portability of the RFB protocol.

3 User Interfaces on a Cellular Phone

Building a remote accessing system for cellular phones
based on an image-based protocol has additional prob-
lems that must be addressed beyond those that must be
considered when building remote accessing systems for
PDAs (such as the PalmVNC[9] and Windows CE clients
for Windows 2000 Terminal Services). These are:

� the cellular phone usually has no pointing device, so
pointing is difficult. In contrast, a user can easily
point anywhere on the screen of PDAs using a sty-
lus.

� the screen is smaller than that of PDAs, so it is im-
possible to directly show the entire display area of
the remote desktop system.

The following gives a description of the basic opera-
tions provided by the SVNC viewer. Then, advanced user
interfaces are introduced that enable the user to quickly
jump and point to a desired area on the remote desktop
display.

3.1 Basic Operations

Figure 4 shows snapshots of the SVNC viewer as the user
is acessing the desktop of a remote MS Windows system.
In Figure 4a, the currently displayed area of the desktop,

called the viewport, is the upper-left corner. The follow-
ing functions are available on the cellular viewer as basic
operations to manipulate the viewport and to send events.

Panning and zooming: The user can move the viewport
horizontally and vertically. The viewport can be
widened (zoom out) to browse its contents and nar-
rowed (zoom in) to see the display in greater de-
tail. Figure 4b shows the viewport after the user has
zoomed out from Figure 4a. The viewport of Fig-
ure 4b shows an area twice as large as the viewport
of Figure 4a, both in width and in height.

Overviewing: In order to browse the entire area of the
desktop display and to choose a specific area within
it, the overviewing mode is provided. When the user
turns this mode on, the aspect ratio is changed so
that the whole area is rendered to fit the screen of
the cellular phone. For example, Figure 4c is an
example of this mode applied to Figure 4b. Note
that, in this view, the viewport to be restored when
the overview mode is turned off is indicated by a
black rectangle as shown in Figure 4c. The user can
move the black rectangle horizontally or vertically
and shrink or enlarge it by pressing keys to change
the viewport while examining the desktop display.
This helps the user adjust the viewport to the desired
area of the desktop display.

Pointing and clicking: The user can move the pointer
on the remote desktop display vertically and hori-
zontally by pressing keys. Dragging can be executed
by pressing a key to specify the start of the drag-
ging operation, then moving the pointer, and finally
pressing the same key to indicate the end of the drag-
ging operation. When the pointer approaches the
edge of the viewport, the viewport is automatically
panned to follow the pointer. Clicking mouse but-
tons can be performed by pressing the correspond-
ing keys on the cellular phone. Double-clicking can
be executed by pressing a specific key as a prefix.

Figure 5. Twin view

Inputting text: Text is entered and edited locally on the
cellular phone using the built-in text input capabil-
ity of the cellular phone. After editing on the cellu-
lar phone, the text is transmitted to the VNC server
via the SVNC proxy. The same mechanism can be
used to send control characters such as backspace,
delete, carriage return, and line feed, by entering es-
cape sequences (the same approach as is used with
Rajicon[10]). For example, the user can list the
files on a remote UNIX system by entering the ls
command with a carriage return as four characters
“ls\n” on a terminal emulator.

3.2 Shortcut Assignment

Common GUI operations, such as pressing GUI buttons
and opening pull-down menus, become very tiresome
when only basic operations are provided. For example,
to push a GUI button that is not currently displayed on
the viewer, the user has to zoom out, pan several times,
and may then have to zoom in to show the button.

To shorten the time necessary to access frequently
used display areas, the SVNC viewer offers a mechanism
called a shortcut. This mechanism enables the user to reg-
ister the current viewport to a specific numerical key by
pressing a numerical key from Key-1 to Key-9 after press-
ing Key-Asterisk twice. For subsequent operations, the
user can easily restore the viewport by pressing the des-
ignated numerical key after pressing Key-Asterisk once.
For example, when accessing a remote MS Windows sys-
tem, the user may assign shortcuts to the current working
area, to the upper-left corner of the current application
window (i.e., the area around “File” menu), and to the
lower-left corner (i.e. the area around “Start Menu”).

3.3 Twin View

Sometimes, it is convenient to display two areas of the
desktop simultaneously. Suppose that we are going to
search for a file that matches a given condition on a re-
mote computer. When we are sitting at the computer,

Figure 6. Guidance (upper half of the screen)

we can easily see the area for entering a search condi-
tion and the area that shows the result. We can enter
test conditions and observe the results simply by moving
our line-of-sight slightly. Thus, we can quickly acquire
a condition that produces the desired result. However,
on a SVNC viewer, even though we can use shortcuts
(Section 3.2), we still have to press keys many times to
enter the test conditions and view the results repeatedly.
To solve this problem, the SVNC viewer provides a view
called Twin view. This view divides the display area of
the cellular phone into two parts. The user can control
the upper half and the bottom half independently. There-
fore, he can assign both halves independently to facilitate
his desired task.

In Figure 5, the user has selected the window of the
search tool. On the upper half, the entire window of the
tool is shown. On the bottom half, the control area of
the tool is displayed for giving search conditions. Now,
the user can see whether the given condition produces the
desired results by watching the upper half of the display
immediately after he starts a search. If the desired result
is not obtained, he can launch another search by entering
different conditions using the bottom half of the cellular
display.

3.4 Guidance

A user will often want to know which keys have already
been assigned as shortcuts and which keys are free, espe-
cially when he wants to assign a new key to a different
area. The Guidance function is provided to show this in-
formation. The Guidance function depicts each display
area assigned to a shortcut as a rectangle with the key
number.

The upper half of Figure 6 is a snapshot of the
Guidance function. In this figure, the Guidance function
shows that Key-1, Key-2, and Key-3 are assigned to the
upper-left corner area, to the area around the center, and
to the area around the bottom-right corner respectively.
Therefore, the user can easily determine which keys can
be assigned. In addition, this view can be utilized to
remind the user of the key assignments that have been

made. For example, it can be seen that just pressing Key-
Asterisk and Key-1 will change the view to Figure 4a to
access “My Computer” on the remote desktop.

4 Implementation

We implemented the proposed architecture including the
SVNC proxy and the SVNC viewer using Java.

4.1 Platform

The SVNC proxy was implemented by modifying the
Java version of the VNC viewer released by AT&T Lab-
oratories, Cambridge. The proxy runs as a servlet on an
HTTP server with the servlet API. We are currently us-
ing Apache Tomcat 4.02 as the HTTP server. We have
installed the proxy on a PC with a Windows 2000 work-
station operating system.

The SVNC viewer has been implemented using the
J2ME Wireless SDK released by NTT DoCoMo. The
code of the SVNC viewer has been placed on the HTTP
server of the SVNC proxy and is downloaded in response
to requests from the cellular phone.

We have tested our viewer using a real cellular
phone and have successfully accessed remote computers.

4.2 Handshakes in CRFB Protocol

The viewer periodically requests the SVNC proxy to send
the desktop display of the remote computer as a frame.
This polling action is required to ensure that the Java run-
ning on a NTT DoCoMo device follows the definition of
Doja3 This definition requires that applications on a cel-
lular phone must explicitly send a request to the proxy
to start communication. Moreover, the proxy can only
return one message in response to one request from the
viewer. For each frame, the viewer sends the position
and size of the desired viewport with its zoom level. It
should be noted that the proxy can generate a frame by
shrinking the original image with anti-aliasing depending
upon the zoom level,.

Usually, bitmaps transferred from the proxy to the
viewer are encoded in 120x130x8 bits with compres-
sion. However, during scrolling and dragging, bitmaps
are gray-scaled into 120x130x3 bits with compression.

Pointing and clicking mouse buttons are achieved
by the translation of these events on the proxy side. When
the proxy accepts a request from the viewer, it gener-
ates corresponding event sequences and sends the se-
quences to the VNC server. Inputting text is also real-
ized in the same way. For example, when the user inputs
the text “ls\n”, the proxy generates an event sequence
consisting of six events; KeyPress(“l”), KeyRelease(“l”),
KeyPress(“s”), KeyRelease(“s”), KeyPress(Return), and
eyRelease(Return).

2Apache Tomcat 4.0 is released by the Apache Software Foundation
(http://www.apache.org/).

3Doja is a profile of Connected Limited Device Configuration
(CLDC)[11], that is defined by NTT DoCoMo.

The bindings of shortcuts (Section 3.2) are stored in
the proxy. When the user assigns an area to a key, the cur-
rent size and position of the viewport and the zoom level
of the viewport are saved. When the user uses a short-
cut, the key is sent to the proxy and the proxy sends the
viewport information with its image back to the viewer.

5 Related Work

There are several remote accessing systems available that
provide a cellular phone with access to the desktop of
a remote computer. [12] uses a GUI-CUI transforma-
tion enabling the user to access the GUI applications of
a remote PC. The mechanism analyzes the structure of
the GUI components of an application and sends the re-
sult in Compact HTML, which is displayed with the Web
browser on the cellular phone. The user’s manipulation of
the Web browser is converted into application events by
the CGI interface. CAFEMOON@HOME[13] is another
system that uses this approach to access networked appli-
ances. However, the developer must prepare a software
module to produce the semantics of the target application
and/or an algorithm to analyze the semantics. These soft-
ware modules are not required in our proposed system.

Desktop On-Call[14] Version 5 and Rajicon[10] are
based on an image-based approach. In this sense, these
systems use the same approach as ours does. Desktop
On-Call enables the user to see the image of a remote
desktop from the cellular phone, but the user cannot ma-
nipulate the desktop. Rajicon[10] enables the user to see
and manipulate the desktop of a remote PC. However, it is
limited to accessing MS Windows systems, since the sys-
tem also utilizes information captured from the MS Win-
dows operating system, such as the positions of windows,
to support minimizing and maximizing of the windows.

6 Discussions

The size of a frame is approximately 12.2k bytes in
120x130x8 bits. This results in 3.9 frames per second
(fps) for a system with a transmission capability of 386k
bps. However, since images consisting of a desktop are
relatively simple (a small number of colors used and they
have a great number of rectangular areas of the same
color), this is almost the worst case and the speed is usu-
ally at least doubled. When the user moves the pointer,
the frame rate is approximately 13.6 fps, since the size of
a gray-scaled frame of 120x130x3 bits is approximately
3.51k bytes.

By incorporating Shortcuts, our advanced interface
has successfully reduced the user effort required to move
the viewport and to point. This mechanism can be eas-
ily extended to include text inputting. Since many oper-
ations of modern GUI applications can be executed us-
ing keyboard shortcuts, the time required to perform a
specific task can be significantly reduced by registering
key sequences to execute the necessary operations and
viewing operations (panning and zooming) as one short-
cut. Furthermore, pattern-matching techniques can be
employed to improve the user interface by utilizing the

properties of GUI applications. Typically, GUI applica-
tions on the same desktop share the same bitmaps. Ex-
amples include GUI buttons (such as “Close Window”
and “Minimize Window”) and pull-down menus (such as
“File” and “Edit”). Therefore, it will become easier to re-
motely press GUI buttons and open pull-down menus by
first registering the bitmaps of those GUI components and
later searching those components using pattern matching
techniques. Consequently, the viewer can provide the
user with intelligent mapping. This enables the user to
quickly move the viewport to the GUI components that
the user wants to manipulate. This pattern matching can
be combined with the shortcut mechanism. The result can
be considered as an extension of [15].

7 Conclusions with Future Work

We have proposed a system to remotely access a com-
puter desktop using only a cellular phone, despite the
physical and bandwidth limitations of cellular phones.
The system has a VNC-based architecture for accessing
a remote desktop from the cellular phone. A proxy is
placed to convert different devices, to suppress network
traffic, and to support recovery from an unscheduled dis-
connection. To increase user-friendliness and to solve the
problem of the small screen, several functions are pro-
vided on the cellular viewer. Frequently used screen ar-
eas of the desktop can be registered and quickly restored
quickly by using a Shortcut assignment. The Guidance
function can be used to show the Shortcut assignments.
Two areas of the desktop display can be viewed simul-
taneously using the Twin view function. We have im-
plemented a prototype of this system using Java, and
checked the operation on a Java-enabled cellular phone
emulator.

Currently, we are extending our implementation to
support incremental updating of the SVNC viewer image,
to speed up the frame rate and to incorporate more intelli-
gent navigation. We are also trying to provide integrated
panning and zooming of the viewport to simplify these
basic operations, by applying speed-dependent automatic
zooming[16].

Acknowledgments

We are greatly indebted to Dr. Motoki Miura for his co-
operation and numerous discussions on the subject of this
work.

References

[1] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEEE In-
ternet Computing, 2(1), 1998, 33–38.

[2] A. Marcus, J. V. Ferrante, T. Kinnunen, K. Kuutti,
and E. Sparre. Baby Faces: User-Interface Design
for Small Displays. In Proc. the conference on CHI
98 summary: human factors in computing systems,
ACM Press, April 1998, 96–97.

[3] R. W. Scheifler. X Window System Protocol X Con-
sortium Standard X Version 11, Release 6.4. X Con-
sortium, Inc.

[4] Microsoft Corporation. Windows 2000 Server Re-
mote Desktop Protocol (RDP) Features and Perfor-
mance White Paper, June 2000.

[5] Microsoft Corporation. Windows 2000 Terminal
Services: An Integrated, Server-Based Computing
Solution, September 1999.

[6] T. Richardson and K. R. Wood. The RFB Protocol
Version 3.3. AT&T Laboratories Cambridge, Jan-
uary 1998.

[7] T. Haraikawa, T. Sakamoto, T. Hase, T. Mizuno,
and A. Togashi. �VNC: A Proposal for Internet
Connectivity and Interconnectivity of Home Appli-
ances based on Remote Display Framework. IEEE
Transactions on Consumer Electronics, 47(3), Au-
gust 2001, 512–519.

[8] A. Hasegawa and T. Nakajima. A User Interface
System for Home Appliances with Virtual Netowrk
Computing. In Proc. IEEE International Workshop
on Smart Appliances and Wearable Computing (IW-
SAWC2001), April 2001.

[9] Harakan Software. PalmVNC: Virtual Net-
work Computing Client for Palm Platform.
http://www.harakan.btinternet.co.uk/PalmVNC/.

[10] N. Su, M. Tsukamoto, and S. Nishio. Rajicon: A
System for Remote PC Access through a Cellular
Phone. In Proc. MultiMedia, Distributed, Coopera-
tive and Mobile Symposium (DICOMO 2001), vol.
2001 of IPSJ Symposium Series. Information Pro-
cessing Society of Japan, June 2001, 349–354.

[11] Sun Microsystems. J2ME(TM) Connected Limited
Device Configuration Specification 1.0a, May 2000.

[12] H. Okada, K. Kato, T. Ikegami, Y. Tatsumi, and
T. Asahi. Proposal of a PC Remote Control System
by Mobile Devices. In IPSJ SIG Notes, volume 93
of Human Interface, Information Processing Soci-
ety of Japan, May 2001, 1–6. (in Japanese).

[13] INPROBE Networks Inc. CAFEMOON@HOME.
http://www.cafemoon.org/.

[14] IMB Corporation. Desktop On-Call Version 5
Users’ Guide, 1.0 edition, November 2001. (in
Japanese).

[15] K. Yamamoto. A Programming Method of Us-
ing GUI as API. IPSJ Transactions on Program-
ming, 39(SIG1(PRO1)), December 1998, 26–33. (in
Japanese).

[16] T. Igarashi and K. Hinckley. Speed-Dependent Au-
tomatic Zooming for Browsing Large Documents.
In Proc. the ACM Symposium on User Interface
Software and Technology, ACM Press, November
2000, 139–148.

